cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151919 a(n) = (-2)^n*A_{n,3}(1/2) where A_{n,k}(x) are the generalized Eulerian polynomials.

Original entry on oeis.org

1, -4, 34, -442, 7654, -165634, 4301254, -130313362, 4512058774, -175757170114, 7606919927974, -362157366660082, 18809374928573494, -1058311485335621794, 64126470727596628294, -4163172358878650459602, 288297029592971540217814, -21212159439736738874060674
Offset: 0

Views

Author

Roger L. Bagula, Jan 12 2009

Keywords

Comments

Old name was: row sums in A154594.

Crossrefs

Cf. A154594 (row sums), A284861 (row sums if unsigned).
Cf. A000670 (Fubini numbers).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(-x)/(2 - Exp(-3*x)) ))); // G. C. Greubel, May 27 2024
  • Mathematica
    m = 18; CoefficientList[Exp[-x]/(2 - Exp[-3x]) + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Jun 19 2019 *)
  • SageMath
    @CachedFunction
    def BB(n, k, x):  # modified cardinal B-splines
        if n == 1: return 0 if (x < 0) or (x >= k) else 1
        return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
    def EulerianPolynomial(n, k, x):
        if n == 0: return 1
        return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
    [(-2)^n*EulerianPolynomial(n, 3, 1/2) for n in (0..17)]
    # Peter Luschny, May 04 2013
    

Formula

E.g.f.: exp(-x)/(2 - exp(-3*x)). (see e.g.f. of row sums of A284861 with x -> -x). - Wolfdieter Lang, Jul 12 2017
a(n) = (-1)^n*Sum_{k=0..n} binomial(n,k)*3^k*A000670(k). - Emanuele Munarini, Dec 05 2020

Extensions

New name and more terms added by Peter Luschny, May 04 2013