A151971 Numbers n such that n^2 - n is divisible by 21.
0, 1, 7, 15, 21, 22, 28, 36, 42, 43, 49, 57, 63, 64, 70, 78, 84, 85, 91, 99, 105, 106, 112, 120, 126, 127, 133, 141, 147, 148, 154, 162, 168, 169, 175, 183, 189, 190, 196, 204, 210, 211, 217, 225, 231, 232, 238, 246, 252, 253, 259, 267, 273, 274, 280, 288, 294, 295, 301, 309
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13:A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984.
Cf. A215202.
Programs
-
Magma
[n: n in [0..309] | IsZero((n^2-n) mod 21)]; // Bruno Berselli, Aug 06 2012
-
Maple
A151971:=n->(42*n+14*I^((n-1)*n)-3*I^(2*n)-3)/8-7: seq(A151971(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Select[Range[0,400], Divisible[#^2-#,21]&] (* Harvey P. Dale, Jun 04 2012 *)
-
Maxima
makelist((42*n+14*%i^((n-1)*n)-3*(-1)^n-3)/8-7, n, 1, 60); /* Bruno Berselli, Aug 06 2012 */
Formula
From Bruno Berselli, Aug 06 2012: (Start)
G.f.: x^2*(1+6*x+8*x^2+6*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (42*n +14*i^((n-1)*n) -3*(-1)^n -3)/8 -7, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (24 + (21*x - 31)*cosh(x) + 7*(sin(x) + cos(x) + (3*x - 4)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016
Comments