A151972 Numbers that are congruent to {0, 1, 6, 10} mod 15.
0, 1, 6, 10, 15, 16, 21, 25, 30, 31, 36, 40, 45, 46, 51, 55, 60, 61, 66, 70, 75, 76, 81, 85, 90, 91, 96, 100, 105, 106, 111, 115, 120, 121, 126, 130, 135, 136, 141, 145, 150, 151, 156, 160, 165, 166, 171, 175, 180, 181, 186, 190, 195, 196, 201, 205, 210, 211, 216, 220, 225
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.
Programs
-
Magma
[ n : n in [0..1000] | n mod 15 in [0, 1, 6, 10]]; // Vincenzo Librandi, Apr 02 2011, simplified by Eric M. Schmidt, Aug 05 2012
-
Magma
[ n: n in [0..1000] | (n^2-n) mod (15) eq 0 ]; // Vincenzo Librandi, Apr 03 2011, altered by Eric M. Schmidt, Aug 05 2012
-
Maple
A151972:=n->(30*n-41-5*I^(2*n)+(3+3*I)*I^(-n)+(3-3*I)*I^n)/8: seq(A151972(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Select[Range[0, 300], Divisible[#^2-#, 15]&] (* Harvey P. Dale, Apr 01 2011, altered by Eric M. Schmidt, Aug 05 2012 *)
Formula
G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016
Comments