cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151974 a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.

Original entry on oeis.org

0, 15, 90, 315, 840, 1890, 3780, 6930, 11880, 19305, 30030, 45045, 65520, 92820, 128520, 174420, 232560, 305235, 395010, 504735, 637560, 796950, 986700, 1210950, 1474200, 1781325, 2137590, 2548665, 3020640, 3560040, 4173840, 4869480, 5654880, 6538455, 7529130
Offset: 0

Views

Author

Keywords

Comments

Also the number of 4-cycles in the (n+3)-triangular graph. - Eric W. Weisstein, Aug 14 2017

Crossrefs

Cf. A054559.
Cf. A002417 (number of 3-cycles in the triangular graph), A290939 (5-cycles), A290940 (6-cycles).

Programs

  • Maple
    A151974:=n->n*(n+1)*(n+2)*(n+3)*(n+4)/8: seq(A151974(n), n=0..60); # Wesley Ivan Hurt, Feb 11 2017
  • Mathematica
    Table[Pochhammer[n, 5]/8, {n, 0, 31}] (* or *)
    Rest @ CoefficientList[Series[15 x^2/(1 - x)^6, {x, 0, 32}], x] (* Michael De Vlieger, Feb 12 2017 *)
    Pochhammer[Range[0, 20], 5]/8 (* Eric W. Weisstein, Aug 14 2017 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 15, 90, 315, 840, 1890}, 20] (* Eric W. Weisstein, Aug 14 2017 *)
    Table[15 Binomial[n + 4, 5], {n, 0, 20}] (* Eric W. Weisstein, Aug 14 2017 *)
    15 Binomial[Range[4, 24], 5] (* Eric W. Weisstein, Aug 14 2017 *)
    Table[(24 n+50 n^2+35 n^3+10 n^4+n^5)/8,{n,0,40}] (* or *) Table[Times@@Range[n,n+4]/8,{n,0,40}] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)*(n+4)/8 \\ Charles R Greathouse IV, Aug 14 2017

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.
G.f.: 15*x/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Aug 14 2017
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 131/36. (End)

Extensions

Offset corrected by Eric W. Weisstein, Aug 14 2017