cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151979 Numbers congruent to {0, 1} (mod 19).

Original entry on oeis.org

0, 1, 19, 20, 38, 39, 57, 58, 76, 77, 95, 96, 114, 115, 133, 134, 152, 153, 171, 172, 190, 191, 209, 210, 228, 229, 247, 248, 266, 267, 285, 286, 304, 305, 323, 324, 342, 343, 361, 362, 380, 381, 399, 400, 418, 419, 437, 438, 456, 457, 475, 476, 494, 495, 513, 514, 532
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Numbers m such that m^2 - m is divisible by 19.

Programs

  • Magma
    [n : n in [0..600] | n mod 19 in [0, 1]]; // Vincenzo Librandi, Feb 04 2020
    
  • Mathematica
    Select[Range[0,600],MemberQ[{0,1},Mod[#,19]]&] (* Harvey P. Dale, Feb 11 2019 *)
  • PARI
    a(n) = (1/4)*(38*n - 55 - 17*(-1)^n); \\ David Lovler, Jul 25 2022

Formula

a(n+1) = Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1 and b(k)=19*2^(k-1) for k>0. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+18*x)/((1-x)^2*(1+x)). - Colin Barker, Apr 09 2012
a(n) = a(n-1) + a(n-2) - a(n-3). - Colin Barker, Apr 09 2012
From Stefano Spezia, Feb 01 2020: (Start)
a(n) = (1/4)*(38*n - 55 - 17*(-1)^n).
E.g.f.: (19/2)*(x*(cosh(x) + sinh(x)) - sinh(x)) - 18*(cosh(x) - 1). (End)