A151979 Numbers congruent to {0, 1} (mod 19).
0, 1, 19, 20, 38, 39, 57, 58, 76, 77, 95, 96, 114, 115, 133, 134, 152, 153, 171, 172, 190, 191, 209, 210, 228, 229, 247, 248, 266, 267, 285, 286, 304, 305, 323, 324, 342, 343, 361, 362, 380, 381, 399, 400, 418, 419, 437, 438, 456, 457, 475, 476, 494, 495, 513, 514, 532
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n : n in [0..600] | n mod 19 in [0, 1]]; // Vincenzo Librandi, Feb 04 2020
-
Mathematica
Select[Range[0,600],MemberQ[{0,1},Mod[#,19]]&] (* Harvey P. Dale, Feb 11 2019 *)
-
PARI
a(n) = (1/4)*(38*n - 55 - 17*(-1)^n); \\ David Lovler, Jul 25 2022
Formula
a(n+1) = Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1 and b(k)=19*2^(k-1) for k>0. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+18*x)/((1-x)^2*(1+x)). - Colin Barker, Apr 09 2012
a(n) = a(n-1) + a(n-2) - a(n-3). - Colin Barker, Apr 09 2012
From Stefano Spezia, Feb 01 2020: (Start)
a(n) = (1/4)*(38*n - 55 - 17*(-1)^n).
E.g.f.: (19/2)*(x*(cosh(x) + sinh(x)) - sinh(x)) - 18*(cosh(x) - 1). (End)
Comments