A151983 Numbers congruent to {0, 1} mod 32.
0, 1, 32, 33, 64, 65, 96, 97, 128, 129, 160, 161, 192, 193, 224, 225, 256, 257, 288, 289, 320, 321, 352, 353, 384, 385, 416, 417, 448, 449, 480, 481, 512, 513, 544, 545, 576, 577, 608, 609, 640, 641, 672, 673, 704, 705, 736, 737, 768, 769, 800, 801, 832, 833, 864, 865
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Flatten[{#,#+1}&/@(32Range[0,35])] (* Harvey P. Dale, Mar 11 2011 *) CoefficientList[Series[(1 + 31 x) x / ((1 + x) (1 - x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
-
PARI
a(n)=(32*n-15*(-1)^n-47)/2 \\ Charles R Greathouse IV, Oct 16 2015
Formula
From Bruno Berselli, Jan 26 2011: (Start)
G.f.: (1+31*x)*x^2/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
a(n) = (32*n - 15*(-1)^n - 47)/2.
Sum_{k=1..n} a(k) == 0 (mod A004526(n)) for n > 1. (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(k)=2^(k+4) for k > 0. - Philippe Deléham, Oct 16 2011
E.g.f.: 31 + ((32*x - 47)*exp(x) - 15*exp(-x))/2. - David Lovler, Sep 10 2022
Comments