cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151989 a(n) = A001512(n)/24 = (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/24.

Original entry on oeis.org

1, 126, 1001, 3876, 10626, 23751, 46376, 82251, 135751, 211876, 316251, 455126, 635376, 864501, 1150626, 1502501, 1929501, 2441626, 3049501, 3764376, 4598126, 5563251, 6672876, 7940751, 9381251, 11009376, 12840751, 14891626, 17178876, 19720001, 22533126
Offset: 0

Views

Author

M. F. Hasler, Sep 14 2009

Keywords

Crossrefs

Cf. A001512.

Programs

  • Magma
    [(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/24: n in [0..30]]; // Vincenzo Librandi, Aug 17 2011
    
  • Mathematica
    (Times@@#)/24&/@Table[5n+i,{n,0,35},{i,4}] (* Harvey P. Dale, Aug 16 2011 *)
    Table[Binomial[5*n+4,4], {n,0,30}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(30, n, n--; binomial(5*n+4,4)) \\ G. C. Greubel, Nov 08 2018

Formula

Sum_{k>=0} 1/a(k) = 4*sqrt(10-22/sqrt(5))*Pi/5. - Jaume Oliver Lafont, May 22 2010
G.f.: (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/(1-x)^5. - Colin Barker, Aug 17 2012
Sum_{n>=0} (-1)^n/a(n) = 32*log(2)/5 - 8*arccoth(3/sqrt(5))/sqrt(5). - Amiram Eldar, Sep 20 2022