cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152020 Denominator of 8/(9n^2) divided by 9.

Original entry on oeis.org

1, 1, 9, 2, 25, 9, 49, 8, 81, 25, 121, 18, 169, 49, 225, 32, 289, 81, 361, 50, 441, 121, 529, 72, 625, 169, 729, 98, 841, 225, 961, 128, 1089, 289, 1225, 162, 1369, 361, 1521, 200, 1681, 441, 1849, 242, 2025, 529, 2209, 288, 2401, 625
Offset: 1

Views

Author

Paul Curtz, Nov 20 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[8/(9*Range[50]^2)]/9 (* or *) LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 1, 9, 2, 25, 9, 49, 8, 81,  25, 121, 18}, 50] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    a(n) = denominator(8/(9*n^2))/9 \\ Michel Marcus, Jun 01 2013

Formula

a(n) = A152018(n)/9.
a(1)=1, a(2)=1, a(3)=9, a(4)=2, a(5)=25, a(6)=9, a(7)=49, a(8)=8, a(9)=81, a(10)=25, a(11)=121, a(12)=18, a(n)=3*a(n-4)-3*a(n-8)+a(n-12). - Harvey P. Dale, Aug 25 2013
Conjecture: a(n) = denominator((n-2)^3/n^2). - Andres Cicuttin, Sep 19 2017
a(n) = n^2/gcd(n^2, 8). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} 1/a(n) = Pi^2/3 (A195055). - Amiram Eldar, Sep 14 2022

Extensions

More terms from Michel Marcus, Jun 01 2013
Keyword:mult added by Andrew Howroyd, Jul 25 2018