A152020 Denominator of 8/(9n^2) divided by 9.
1, 1, 9, 2, 25, 9, 49, 8, 81, 25, 121, 18, 169, 49, 225, 32, 289, 81, 361, 50, 441, 121, 529, 72, 625, 169, 729, 98, 841, 225, 961, 128, 1089, 289, 1225, 162, 1369, 361, 1521, 200, 1681, 441, 1849, 242, 2025, 529, 2209, 288, 2401, 625
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Mathematica
Denominator[8/(9*Range[50]^2)]/9 (* or *) LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 1, 9, 2, 25, 9, 49, 8, 81, 25, 121, 18}, 50] (* Harvey P. Dale, Aug 25 2013 *)
-
PARI
a(n) = denominator(8/(9*n^2))/9 \\ Michel Marcus, Jun 01 2013
Formula
a(n) = A152018(n)/9.
a(1)=1, a(2)=1, a(3)=9, a(4)=2, a(5)=25, a(6)=9, a(7)=49, a(8)=8, a(9)=81, a(10)=25, a(11)=121, a(12)=18, a(n)=3*a(n-4)-3*a(n-8)+a(n-12). - Harvey P. Dale, Aug 25 2013
Conjecture: a(n) = denominator((n-2)^3/n^2). - Andres Cicuttin, Sep 19 2017
a(n) = n^2/gcd(n^2, 8). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} 1/a(n) = Pi^2/3 (A195055). - Amiram Eldar, Sep 14 2022
Extensions
More terms from Michel Marcus, Jun 01 2013
Keyword:mult added by Andrew Howroyd, Jul 25 2018