A152090 a(n) = 2^n*Product_{k=1..floor((n-1)/2)} (1 + 2*cos(k*Pi/n)^2 + 4*cos(k*Pi/n)^4).
1, 1, 1, 3, 7, 16, 39, 91, 217, 513, 1216, 2881, 6825, 16171, 38311, 90768, 215047, 509491, 1207089, 2859841, 6775552, 16052673, 38032081, 90105811, 213479175, 505776016, 1198287271, 2838988683, 6726147337, 15935624641, 37754768064
Offset: 0
Links
- Peter Bala, Linear divisibility sequences and Chebyshev polynomials
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for linear recurrences with constant coefficients, signature (1,3,1,-1).
Crossrefs
Cf. A100047.
Programs
-
Mathematica
bb = Table[FullSimplify[ExpandAll[Product[1 + 4*Cos[k*Pi/n]^2 + 16*Cos[k*Pi/n]^4, {k, 1, (n - 1)/2}]]], {n, 0, 30}] LinearRecurrence[{1, 3, 1, -1}, {1, 1, 1, 3, 7}, 50] (* G. C. Greubel, Aug 08 2017 *)
-
PARI
Vec((x^4-2*x^3-3*x^2+1)/(x^4-x^3-3*x^2-x+1) + O(x^100)) \\ Colin Barker, Jan 05 2014
Formula
From Colin Barker, Jan 05 2014: (Start)
a(n) = a(n-1) +3*a(n-2) +a(n-3) -a(n-4) for n>4.
G.f.: (x^4-2*x^3-3*x^2+1) / (x^4-x^3-3*x^2-x+1). (End)
From Peter Bala, Mar 25 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), n >= 1, where alpha = 1/4*(1 + sqrt(21)), beta = 1/4*(1 - sqrt(21)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,1/4*(1 + sqrt(-3)))*U(n-1,1/4*(1 - sqrt(-3))) for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/4; 1, 1/2]. See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
Comments