cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152161 a(n) = 100*n^2 + 100*n + 21.

Original entry on oeis.org

21, 221, 621, 1221, 2021, 3021, 4221, 5621, 7221, 9021, 11021, 13221, 15621, 18221, 21021, 24021, 27221, 30621, 34221, 38021, 42021, 46221, 50621, 55221, 60021, 65021, 70221, 75621, 81221, 87021, 93021, 99221, 105621, 112221, 119021, 126021, 133221, 140621, 148221
Offset: 0

Views

Author

Paul Curtz, Nov 27 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A017305(n)*A017353(n) = A061037(10*n+3).
From Amiram Eldar, Feb 20 2023: (Start)
Sum_{n>=0} 1/a(n) = sqrt(5-2*sqrt(5))*Pi/40.
Sum_{n>=0} (-1)^n/a(n) = (sqrt(10-2*sqrt(5))*log(cot(Pi/20)) + sqrt(10+2*sqrt(5))*log(tan(3*Pi/20)))/40.
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/10)/phi, where phi is the golden ratio (A001622).
Product_{n>=0} (1 + 1/a(n)) = 2*cos(sqrt(3)*Pi/10)/phi. (End)
From Elmo R. Oliveira, Nov 27 2024: (Start)
G.f.: (21 + 158*x + 21*x^2)/(1-x)^3.
E.g.f.: (21 + 200*x + 100*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)