cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152676 a(n) = A002144(n) - A002314(n).

Original entry on oeis.org

3, 8, 13, 17, 31, 32, 30, 50, 46, 55, 75, 91, 76, 98, 100, 105, 129, 93, 162, 112, 183, 122, 144, 177, 241, 187, 217, 228, 155, 288, 203, 189, 213, 311, 269, 274, 334, 381, 266, 392, 254, 382, 348, 413, 301, 286, 489, 439, 483, 553, 516, 476, 578, 423, 487, 504
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2008

Keywords

Comments

For the four numbers {1, A002314(n), A152676(n), A152680(n)}, the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and is isomorphic with the multiplication table for {1,i,-i,-1} where i = sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with i or -i and A152676(n) vice versa -i or i.
1, A002314(n), A152676(n), A152680(n) are a subfield of the Galois Field [A002144(n)].
Let p = A002144(n), the n-th prime of the form 4k+1. Then a(n) and A002314(n) are the two square roots of -1 (mod p). Note that a(n) is also the multiplicative inverse of A002314(n) (mod p). - T. D. Noe, Feb 18 2010

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[ ! Mod[k^2 + 1, Prime[n]] == 0, k++ ]; AppendTo[aa, Prime[n] - k]], {n, 1, 200}]; aa