2, 5, 4, 12, 6, 9, 23, 11, 27, 34, 22, 10, 33, 15, 37, 44, 28, 80, 19, 81, 14, 107, 89, 64, 16, 82, 60, 53, 138, 25, 114, 148, 136, 42, 104, 115, 63, 20, 143, 29, 179, 67, 109, 48, 208, 235, 52, 118, 86, 24, 77, 125, 35, 194, 154, 149, 106, 58, 26, 135, 96, 353, 87, 39
Offset: 1
A256011
Integers n with the property that the largest prime factor of n^2 + 1 is less than n.
Original entry on oeis.org
7, 18, 21, 38, 41, 43, 47, 57, 68, 70, 72, 73, 83, 99, 111, 117, 119, 123, 128, 132, 133, 142, 157, 172, 173, 174, 182, 185, 191, 192, 193, 200, 211, 212, 216, 233, 237, 239, 242, 251, 253, 255, 265, 268, 273, 278, 293, 294, 302, 305, 307, 313, 319, 322, 327
Offset: 1
7^2 + 1 = 50 = 2 * 5^2;
18^2 + 1 = 325 = 5^2 * 13;
21^2 + 1 = 442 = 2 * 13 * 17.
-
[k:k in [1..330]| Max(PrimeDivisors(k^2+1)) lt k]; // Marius A. Burtea, Jul 27 2019
-
select(n -> max(numtheory:-factorset(n^2+1))Robert Israel, Jun 09 2015
-
Select[Range[10^4], FactorInteger [#^2 + 1][[-1, 1]] < # &] (* Giovanni Resta, Jun 09 2015 *)
-
for(n=1,10^3,N=n^2+1;if(factor(N)[,1][omega(N)] < n,print1(n,", "))) \\ Derek Orr, Jun 08 2015
-
is(n)=my(f=factor(n^2+1)[,1]); f[#f]Charles R Greathouse IV, Jun 09 2015
Original entry on oeis.org
4, 12, 16, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 136, 148, 156, 172, 180, 192, 196, 228, 232, 240, 256, 268, 276, 280, 292, 312, 316, 336, 348, 352, 372, 388, 396, 400, 408, 420, 432, 448, 456, 460, 508, 520, 540, 556, 568, 576, 592, 600, 612, 616
Offset: 1
-
aa = {}; Do[If[Mod[Prime[n], 4] == 1, AppendTo[aa, Prime[n] - 1]], {n, 1, 200}]; aa
Comments