A152722 Triangle read by rows: T(n,0) = prime(n+2), T(n,1) = 1 - T(n,0), T(n,k) = T(n-1,k-1), T(1,0) = 1 T(n,n) = -1.
-1, 1, -1, 7, -6, -1, 11, -10, -6, -1, 13, -12, -10, -6, -1, 17, -16, -12, -10, -6, -1, 19, -18, -16, -12, -10, -6, -1, 23, -22, -18, -16, -12, -10, -6, -1, 29, -28, -22, -18, -16, -12, -10, -6, -1, 31, -30, -28, -22, -18, -16, -12, -10, -6, -1, 37, -36, -30, -28, -22, -18, -16, -12, -10, -6, -1
Offset: 0
Examples
Triangle begins as: -1; 1, -1; 7, -6, -1; 11, -10, -6, -1; 13, -12, -10, -6, -1; 17, -16, -12, -10, -6, -1; 19, -18, -16, -12, -10, -6, -1; 23, -22, -18, -16, -12, -10, -6, -1; 29, -28, -22, -18, -16, -12, -10, -6, -1;
Links
- G. C. Greubel, Rows n = 0..50 of triangle, flattened
Programs
-
Mathematica
T[n_, n_]:= -1; T[1, 0]:= 1; T[n_, 0]:= Prime[n+2]; T[n_, 1]:= 1 - Prime[n+2]; T[n_, k_]:= T[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 07 2019 *)
-
PARI
{T(n,k) = if(k==n, -1, if(n==1 && k==0, 1, if(k==0, prime(n+2), if(k==1, 1-prime(n+2), T(n-1,k-1) ))))}; \\ G. C. Greubel, Apr 07 2019
-
Sage
@CachedFunction def T(n,k): if k==n: return -1 elif n==1 and k==0: return 1 elif k==0: return nth_prime(n+2) elif k==1: return 1 - nth_prime(n+2) else: return T(n-1,k-1) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 07 2019
Formula
T(n,n) = -1, T(1,0) = 1, T(n,0) = prime(n+2), T(n,1) = 1 - prime(n+2), T(n,k) = T(n-1,k-1). - G. C. Greubel, Apr 07 2019
Extensions
Edited by G. C. Greubel, Apr 07 2019