cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152729 a(n) = (n-2)^4 - a(n-1) - a(n-2), with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144
Offset: 1

Views

Author

Keywords

Comments

a(n+2) - a(n-1) = n^4 - (n-1)^4 = A005917(n) for all n in Z. - Michael Somos, Sep 02 2018

Examples

			0 + 0 + 1 = 1^4; 0 + 1 + 15 = 2^4; 1 + 15 + 65 = 3^4; ...
G.f. = x^3 + 15*x^4 + 65*x^5 + 176*x^6 + 384*x^7 + 736*x^8 + 1281*x^9 + ... - _Michael Somos_, Sep 02 2018
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x+1)*(x^2+10*x+1)/((1-x)^5*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^4-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,4!}];lst
    LinearRecurrence[{4,-6,5,-5,6,-4,1}, {0,0,1,15,65,176,384}, 50] (* G. C. Greubel, Sep 01 2018 *)
    a[ n_] := With[ {m = Max[n, 2 - n]}, SeriesCoefficient[ x^3 (1 + x) (1 + 10 x + x^2) / ((1 - x)^5 (1 + x + x^2)), {x , 0, m}]]; (* Michael Somos, Sep 02 2018 *)
  • PARI
    concat([0,0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
    
  • PARI
    {a(n) = my(m = max(n, 2 - n)); polcoeff( x^3 * (1 + x) * (1 + 10*x + x^2) / ((1 - x)^5 * (1 + x + x^2)) + x * O(x^m), m)}; /* Michael Somos, Sep 02 2018 */
    

Formula

G.f.: -x^3*(x+1)*(x^2+10*x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Oct 28 2014
a(n) = a(2 - n) for all n in Z. - Michael Somos, Sep 02 2018

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021