A152730 a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.
0, 0, 1, 31, 211, 782, 2132, 4862, 9813, 18093, 31143, 50764, 79144, 118924, 173225, 245675, 340475, 462426, 616956, 810186, 1048957, 1340857, 1694287, 2118488, 2623568, 3220568, 3921489, 4739319, 5688099, 6782950, 8040100, 9476950
Offset: 1
Examples
0 + 0 + 1 = 1^5; 0 + 1 + 31 = 2^5; 1 + 31 + 211 = 3^5; ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,11,-10,11,-10,5,-1).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018 -
Mathematica
k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^5-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst LinearRecurrence[{5,-10,11,-10,11,-10,5,-1}, {0,0,1,31,211,782,2132, 4862}, 50] (* G. C. Greubel, Sep 01 2018 *) CoefficientList[Series[x^2*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x - 1)^6*(x^2 + x + 1)),{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
-
PARI
concat([0,0], Vec(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
Formula
G.f.: x^3*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x-1)^6*(x^2 + x + 1)). - Colin Barker, Oct 28 2014
Comments