cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152730 a(n) + a(n+1) + a(n+2) = n^5, with a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 31, 211, 782, 2132, 4862, 9813, 18093, 31143, 50764, 79144, 118924, 173225, 245675, 340475, 462426, 616956, 810186, 1048957, 1340857, 1694287, 2118488, 2623568, 3220568, 3921489, 4739319, 5688099, 6782950, 8040100, 9476950
Offset: 1

Views

Author

Keywords

Examples

			0 + 0 + 1 = 1^5; 0 + 1 + 31 = 2^5; 1 + 31 + 211 = 3^5; ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
  • Mathematica
    k0=k1=0;lst={k0,k1};Do[kt=k1;k1=n^5-k1-k0;k0=kt;AppendTo[lst,k1],{n,1,5!}];lst
    LinearRecurrence[{5,-10,11,-10,11,-10,5,-1}, {0,0,1,31,211,782,2132, 4862}, 50] (* G. C. Greubel, Sep 01 2018 *)
    CoefficientList[Series[x^2*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x - 1)^6*(x^2 + x + 1)),{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    concat([0,0], Vec(x^3*(x^4+26*x^3+66*x^2+26*x+1)/((x-1)^6*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
    

Formula

G.f.: x^3*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1) / ((x-1)^6*(x^2 + x + 1)). - Colin Barker, Oct 28 2014