cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152740 11 times triangular numbers.

Original entry on oeis.org

0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890, 11385, 11891
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ... and the same line from 0, in the direction 0, 33, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Axis perpendicular to A195149 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 5*n to 6*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

Formula

a(n) = 11*n*(n+1)/2 = 11*A000217(n).
a(n) = a(n-1) + 11*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
a(n) = A069125(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 27 2013: (Start)
G.f.: 11*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2, a(0)=0, a(1)=11, a(2)=33.
a(n) = A218530(11*n+10).
a(n) = A211013(n)+n = A022269(n)+5*n = A022268(n)+6*n = A180223(n)+9*n = A051865(n)+10*n. (End)
a(n) = Sum_{i=5*n..6*n} i. - Wesley Ivan Hurt, Dec 22 2015
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/11.
Product_{n>=1} (1 - 1/a(n)) = -(11/(2*Pi))*cos(sqrt(19/11)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (11/(2*Pi))*cos(sqrt(3/11)*Pi/2). (End)
E.g.f.: 11*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024