A152741 13 times triangular numbers.
0, 13, 39, 78, 130, 195, 273, 364, 468, 585, 715, 858, 1014, 1183, 1365, 1560, 1768, 1989, 2223, 2470, 2730, 3003, 3289, 3588, 3900, 4225, 4563, 4914, 5278, 5655, 6045, 6448, 6864, 7293, 7735, 8190, 8658, 9139, 9633, 10140, 10660, 11193, 11739, 12298, 12870
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[13*n*(n+1)/2 : n in [0..60]]; // Wesley Ivan Hurt, Dec 22 2015
-
Maple
A152741:=n->13*n*(n+1)/2: seq(A152741(n), n=0..60); # Wesley Ivan Hurt, Dec 22 2015
-
Mathematica
Table[13*n*(n-1)/2, {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *) CoefficientList[Series[13 x/(1 - x)^3, {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 22 2015 *)
-
PARI
a(n)=13*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 13*n*(n+1)/2 = 13 * A000217(n).
a(n) = a(n-1)+13*n (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(n) = A069126(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Wesley Ivan Hurt, Dec 22 2015: (Start)
G.f.: 13*x/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
a(n) = Sum_{i=6n..7n} i. (End)
E.g.f.: 13*x*(2+x)*exp(x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/(2*Pi))*cos(sqrt(21/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/(2*Pi))*cos(sqrt(5/13)*Pi/2). (End)
Comments