cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152741 13 times triangular numbers.

Original entry on oeis.org

0, 13, 39, 78, 130, 195, 273, 364, 468, 585, 715, 858, 1014, 1183, 1365, 1560, 1768, 1989, 2223, 2470, 2730, 3003, 3289, 3588, 3900, 4225, 4563, 4914, 5278, 5655, 6045, 6448, 6864, 7293, 7735, 8190, 8658, 9139, 9633, 10140, 10660, 11193, 11739, 12298, 12870
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13,... and the same line from 0, in the direction 0, 39,..., in the square spiral whose vertices are the generalized 15-gonal numbers. - Omar E. Pol, Oct 03 2011
Sum of the numbers from 6n to 7n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

Formula

a(n) = 13*n*(n+1)/2 = 13 * A000217(n).
a(n) = a(n-1)+13*n (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(n) = A069126(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Wesley Ivan Hurt, Dec 22 2015: (Start)
G.f.: 13*x/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
a(n) = Sum_{i=6n..7n} i. (End)
E.g.f.: 13*x*(2+x)*exp(x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/(2*Pi))*cos(sqrt(21/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/(2*Pi))*cos(sqrt(5/13)*Pi/2). (End)