A152776
Numbers such that every run length in base 2 is 3.
Original entry on oeis.org
7, 56, 455, 3640, 29127, 233016, 1864135, 14913080, 119304647, 954437176, 7635497415, 61083979320, 488671834567, 3909374676536, 31274997412295, 250199979298360, 2001599834386887, 16012798675095096, 128102389400760775
Offset: 1
A154805
Numbers with 4n binary digits where every run length is 4, written in binary.
Original entry on oeis.org
1111, 11110000, 111100001111, 1111000011110000, 11110000111100001111, 111100001111000011110000, 1111000011110000111100001111, 11110000111100001111000011110000, 111100001111000011110000111100001111
Offset: 1
n ... a(n) ................... A154806(n)
1 ... 1111 ................... 15
2 ... 11110000 ............... 240
3 ... 111100001111 ........... 3855
4 ... 1111000011110000 ....... 61680
5 ... 11110000111100001111 ... 986895
-
CoefficientList[Series[1111/((x - 1) (x + 1) (10000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
LinearRecurrence[{10000,1,-10000},{1111,11110000,111100001111},20] (* Harvey P. Dale, Jul 31 2017 *)
-
Vec(1111*x/((x-1)*(x+1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014
A154807
Numbers with 5n binary digits where every run length is 5, written in binary.
Original entry on oeis.org
11111, 1111100000, 111110000011111, 11111000001111100000, 1111100000111110000011111, 111110000011111000001111100000, 11111000001111100000111110000011111, 1111100000111110000011111000001111100000, 111110000011111000001111100000111110000011111
Offset: 1
n ... a(n) ........................ A154808(n)
1 ... 11111 ....................... 31
2 ... 1111100000 .................. 992
3 ... 111110000011111 ............. 31775
4 ... 11111000001111100000 ........ 1016800
5 ... 1111100000111110000011111 ... 32537631
-
CoefficientList[Series[11111/((x - 1) (x + 1) (100000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
LinearRecurrence[{100000,1,-100000},{11111,1111100000,111110000011111},20] (* Harvey P. Dale, Aug 08 2023 *)
-
Vec(11111*x/((x-1)*(x+1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014
Showing 1-3 of 3 results.
Comments