cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A152775 Numbers with 3n binary digits where every run length is 3, written in binary.

Original entry on oeis.org

111, 111000, 111000111, 111000111000, 111000111000111, 111000111000111000, 111000111000111000111, 111000111000111000111000, 111000111000111000111000111, 111000111000111000111000111000
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Comments

A152776 written in base 2.

Examples

			n ... a(n) .............. A152776(n)
1 ... 111 ............... 7
2 ... 111000 ............ 56
3 ... 111000111 ......... 455
4 ... 111000111000 ...... 3640
5 ... 111000111000111 ... 29127
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Table[Flatten[PadRight[{},n,{a,b}]/.{a->{1,1,1},b->{0,0,0}}],{n,10}] (* Harvey P. Dale, Mar 23 2012 *)
    CoefficientList[Series[111/((x - 1) (x + 1) (1000 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 21 2014 *)
  • PARI
    Vec(111*x / ((x-1)*(x+1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-1001-999*(-1)^n+2^(4+3*n)*125^(1+n))/18018.
a(n) = 1000*a(n-1)+a(n-2)-1000*a(n-3).
G.f.: 111*x / ((x-1)*(x+1)*(1000*x-1)). (End).

A154808 Numbers such that every run length in base 2 is 5.

Original entry on oeis.org

31, 992, 31775, 1016800, 32537631, 1041204192, 33318534175, 1066193093600, 34118178995231, 1091781727847392, 34937015291116575, 1117984489315730400, 35775503658103372831, 1144816117059307930592, 36634115745897853778975
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

a(n) is the number whose binary representation is A154807(n).

Crossrefs

Programs

  • Mathematica
    FromDigits[#,2]&/@Table[PadRight[{},5n,{1,1,1,1,1,0,0,0,0,0}],{n,20}] (* or *) LinearRecurrence[{32,1,-32},{31,992,31775},20] (* Harvey P. Dale, May 08 2016 *)

Formula

Conjecture: a(n) = (-33-31*(-1)^n+2^(6+5*n))/66. g.f.: 31*x / ((x-1)*(x+1)*(32*x-1)). - Colin Barker, Sep 16 2013

Extensions

More terms from Sean A. Irvine, Feb 21 2010

A154806 Numbers such that every run length in base 2 is 4.

Original entry on oeis.org

15, 240, 3855, 61680, 986895, 15790320, 252645135, 4042322160, 64677154575, 1034834473200, 16557351571215, 264917625139440, 4238682002231055, 67818912035696880, 1085102592571150095, 17361641481138401520
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

a(n) is the number whose binary representation is A154805(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,1,-16},{15,240,3855},20] (* Harvey P. Dale, Apr 13 2018 *)

Formula

Conjecture: a(n) = 1/17*2^(4*n+4) + 15/34*(-1)^(n+1) - 1/2. - Vaclav Kotesovec, Nov 30 2012
Empirical g.f.: 15*x / ((x-1)*(x+1)*(16*x-1)). - Colin Barker, Sep 16 2013

Extensions

More terms from Sean A. Irvine, Feb 21 2010
Showing 1-3 of 3 results.