cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154805 Numbers with 4n binary digits where every run length is 4, written in binary.

Original entry on oeis.org

1111, 11110000, 111100001111, 1111000011110000, 11110000111100001111, 111100001111000011110000, 1111000011110000111100001111, 11110000111100001111000011110000, 111100001111000011110000111100001111
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

A154806 written in base 2.

Examples

			n ... a(n) ................... A154806(n)
1 ... 1111 ................... 15
2 ... 11110000 ............... 240
3 ... 111100001111 ........... 3855
4 ... 1111000011110000 ....... 61680
5 ... 11110000111100001111 ... 986895
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1111/((x - 1) (x + 1) (10000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
    LinearRecurrence[{10000,1,-10000},{1111,11110000,111100001111},20] (* Harvey P. Dale, Jul 31 2017 *)
  • PARI
    Vec(1111*x/((x-1)*(x+1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-10001-9999*(-1)^n+2^(5+4*n)*625^(1+n))/180018.
a(n) = 10000*a(n-1)+a(n-2)-10000*a(n-3).
G.f.: 1111*x / ((x-1)*(x+1)*(10000*x-1)). (End)

A154808 Numbers such that every run length in base 2 is 5.

Original entry on oeis.org

31, 992, 31775, 1016800, 32537631, 1041204192, 33318534175, 1066193093600, 34118178995231, 1091781727847392, 34937015291116575, 1117984489315730400, 35775503658103372831, 1144816117059307930592, 36634115745897853778975
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

a(n) is the number whose binary representation is A154807(n).

Crossrefs

Programs

  • Mathematica
    FromDigits[#,2]&/@Table[PadRight[{},5n,{1,1,1,1,1,0,0,0,0,0}],{n,20}] (* or *) LinearRecurrence[{32,1,-32},{31,992,31775},20] (* Harvey P. Dale, May 08 2016 *)

Formula

Conjecture: a(n) = (-33-31*(-1)^n+2^(6+5*n))/66. g.f.: 31*x / ((x-1)*(x+1)*(32*x-1)). - Colin Barker, Sep 16 2013

Extensions

More terms from Sean A. Irvine, Feb 21 2010
Showing 1-2 of 2 results.