cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154807 Numbers with 5n binary digits where every run length is 5, written in binary.

Original entry on oeis.org

11111, 1111100000, 111110000011111, 11111000001111100000, 1111100000111110000011111, 111110000011111000001111100000, 11111000001111100000111110000011111, 1111100000111110000011111000001111100000, 111110000011111000001111100000111110000011111
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

A154808 written in base 2.

Examples

			n ... a(n) ........................ A154808(n)
1 ... 11111 ....................... 31
2 ... 1111100000 .................. 992
3 ... 111110000011111 ............. 31775
4 ... 11111000001111100000 ........ 1016800
5 ... 1111100000111110000011111 ... 32537631
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[11111/((x - 1) (x + 1) (100000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
    LinearRecurrence[{100000,1,-100000},{11111,1111100000,111110000011111},20] (* Harvey P. Dale, Aug 08 2023 *)
  • PARI
    Vec(11111*x/((x-1)*(x+1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-100001-99999*(-1)^n+2^(6+5*n)*3125^(1+n))/1800018.
a(n) = 100000*a(n-1)+a(n-2)-100000*a(n-3).
G.f.: 11111*x / ((x-1)*(x+1)*(100000*x-1)). (End)

Extensions

More terms from Colin Barker, Apr 20 2014

A154806 Numbers such that every run length in base 2 is 4.

Original entry on oeis.org

15, 240, 3855, 61680, 986895, 15790320, 252645135, 4042322160, 64677154575, 1034834473200, 16557351571215, 264917625139440, 4238682002231055, 67818912035696880, 1085102592571150095, 17361641481138401520
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

a(n) is the number whose binary representation is A154805(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,1,-16},{15,240,3855},20] (* Harvey P. Dale, Apr 13 2018 *)

Formula

Conjecture: a(n) = 1/17*2^(4*n+4) + 15/34*(-1)^(n+1) - 1/2. - Vaclav Kotesovec, Nov 30 2012
Empirical g.f.: 15*x / ((x-1)*(x+1)*(16*x-1)). - Colin Barker, Sep 16 2013

Extensions

More terms from Sean A. Irvine, Feb 21 2010
Showing 1-2 of 2 results.