cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152786 Integers k such that (k^2)/2 is the arithmetic mean of a pair of twin primes.

Original entry on oeis.org

6, 12, 42, 48, 72, 84, 90, 174, 204, 264, 306, 372, 408, 456, 474, 546, 594, 600, 642, 750, 852, 882, 936, 972, 978, 1038, 1140, 1212, 1272, 1386, 1470, 1512, 1518, 1584, 1770, 1836, 1902, 1980, 1986, 2130, 2196, 2256, 2262, 2316, 2382, 2652, 2688, 2718
Offset: 1

Views

Author

Keywords

Comments

Square roots of A054735 where these are integer.

Examples

			6 is a term since (6^2)/2 = 18 = mean(17, 19).
12 is a term since (12^2)/2 = 72 = mean(71,73).
42 is a term since (42^2)/2 = 882 = mean(881,883).
		

Crossrefs

Cf. A014574, A037073, A054735, A152788 (cubic version).
Subsequence of A074924. - Zak Seidov, Feb 01 2013

Programs

  • Magma
    [k:k in [2..2800 by 2]| IsPrime(k*k div 2 -1) and IsPrime(k*k div 2 +1)]; // Marius A. Burtea, Jan 01 2020
  • Maple
    isa := n -> isprime(n) and isprime(n+2) and issqr(2*n+2):
    select(isa, [$4..1000000]): map(n -> sqrt(2*n+2), %); # Peter Luschny, Jan 05 2020
  • Mathematica
    lst={};Do[p1=Prime[n];p2=Prime[n+1];If[p2-p1==2,e=(2*(p1+1))^(1/2);i=Floor[e]; If[e==i,AppendTo[lst,i]]],{n,3*9!}];lst
    (* Second program: *)
    Select[Map[Sqrt[2 #] &, Mean /@ Select[Partition[Prime@ Range[10^6], 2, 1], Subtract @@ # == -2 &]], IntegerQ] (* Michael De Vlieger, Feb 18 2018 *)
  • PARI
    forstep(n=6,1e3,6,if(isprime(n^2/2-1)&&isprime(n^2/2+1),print1(n", "))) \\ Charles R Greathouse IV, Feb 01 2013
    

Formula

{n: n^2 = A054735(i), any i}. - R. J. Mathar, Dec 12 2008
a(n) = 6*A037073(n). [Zak Seidov, seqfan list, Aug 20 2010] [From R. J. Mathar, Sep 07 2010]

Extensions

Edited by R. J. Mathar, Dec 12 2008