A152786 Integers k such that (k^2)/2 is the arithmetic mean of a pair of twin primes.
6, 12, 42, 48, 72, 84, 90, 174, 204, 264, 306, 372, 408, 456, 474, 546, 594, 600, 642, 750, 852, 882, 936, 972, 978, 1038, 1140, 1212, 1272, 1386, 1470, 1512, 1518, 1584, 1770, 1836, 1902, 1980, 1986, 2130, 2196, 2256, 2262, 2316, 2382, 2652, 2688, 2718
Offset: 1
Keywords
Examples
6 is a term since (6^2)/2 = 18 = mean(17, 19). 12 is a term since (12^2)/2 = 72 = mean(71,73). 42 is a term since (42^2)/2 = 882 = mean(881,883).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..4288 from Zak Seidov)
- Zak Seidov, A152786 = 6*A037073: near-duplicates?, seqfan list, Aug 20 2010.
Crossrefs
Programs
-
Magma
[k:k in [2..2800 by 2]| IsPrime(k*k div 2 -1) and IsPrime(k*k div 2 +1)]; // Marius A. Burtea, Jan 01 2020
-
Maple
isa := n -> isprime(n) and isprime(n+2) and issqr(2*n+2): select(isa, [$4..1000000]): map(n -> sqrt(2*n+2), %); # Peter Luschny, Jan 05 2020
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];If[p2-p1==2,e=(2*(p1+1))^(1/2);i=Floor[e]; If[e==i,AppendTo[lst,i]]],{n,3*9!}];lst (* Second program: *) Select[Map[Sqrt[2 #] &, Mean /@ Select[Partition[Prime@ Range[10^6], 2, 1], Subtract @@ # == -2 &]], IntegerQ] (* Michael De Vlieger, Feb 18 2018 *)
-
PARI
forstep(n=6,1e3,6,if(isprime(n^2/2-1)&&isprime(n^2/2+1),print1(n", "))) \\ Charles R Greathouse IV, Feb 01 2013
Formula
{n: n^2 = A054735(i), any i}. - R. J. Mathar, Dec 12 2008
Extensions
Edited by R. J. Mathar, Dec 12 2008
Comments