cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152811 a(n) = 2*(n^2 + 2*n - 2).

Original entry on oeis.org

2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Positive numbers k such that 2*k + 12 is a square. [Comment simplified by Zak Seidov, Jan 14 2009]
Sequence gives positive x values of solutions (x,y) to the Diophantine equation 2*x^3 + 12*x^2 = y^2. Corresponding y values are 8*A154560. There are three other solutions: (0,0), (-4,8) and (-6,0).
From a(2) onwards, third subdiagonal of triangle defined in A144562.
Also, nonnegative numbers of the form (m+sqrt(-3))^2 + (m-sqrt(-3))^2. - Bruno Berselli, Mar 13 2015
a(n-1) is the maximum Zagreb index over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars, so the bound also applies to 2-trees. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024

Examples

			a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
		

Crossrefs

Cf. A028872 (n^2-3), A154560 ((n+3)^2*n/2+1), A144562 (triangle T(m,n) = 2m*n+m+n-1).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Magma
    [ 2*(n^2+2*n-2) : n in [1..47] ];
    
  • Mathematica
    Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    {m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}

Formula

G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by Elmo R. Oliveira, Nov 17 2024]
a(n) = 2*A028872(n+1).
a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 12 2009