A152811 a(n) = 2*(n^2 + 2*n - 2).
2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1
Examples
a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square. The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs, Vol. 0(1) (2024), Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin., Vol. 89(1) (2024), pp. 167-178.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J. Comb. Optim., Vol. 27 (2014), pp. 271-291.
- I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., No. 50 (2004), pp. 83-92.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[ 2*(n^2+2*n-2) : n in [1..47] ];
-
Mathematica
Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
-
PARI
{m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}
Formula
G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by Elmo R. Oliveira, Nov 17 2024]
a(n) = 2*A028872(n+1).
a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Extensions
Edited and extended by Klaus Brockhaus, Jan 12 2009
Comments