cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A152835 a(0) = -22; a(n) = n-a(n-1).

Original entry on oeis.org

-22, 23, -21, 24, -20, 25, -19, 26, -18, 27, -17, 28, -16, 29, -15, 30, -14, 31, -13, 32, -12, 33, -11, 34, -10, 35, -9, 36, -8, 37, -7, 38, -6, 39, -5, 40, -4, 41, -3, 42, -2, 43, -1, 44, 0, 45, 1, 46, 2, 47, 3, 48, 4, 49, 5, 50, 6, 51, 7, 52, 8, 53, 9, 54, 10, 55, 11, 56, 12
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(1-89*(-1)^n+2*n)/4 : n in [0..100]]; // Wesley Ivan Hurt, Oct 28 2014
  • Maple
    A152835:=n->(1-89*(-1)^n+2*n)/4: seq(A152835(n), n=0..100); # Wesley Ivan Hurt, Oct 28 2014
  • Mathematica
    lst={};a=-22;Do[a=n-a;AppendTo[lst,a],{n,0,6!}];lst
  • PARI
    Vec(-(22*x^2-45*x+22)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Oct 28 2014
    

Formula

a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: -(22*x^2-45*x+22) / ((x-1)^2*(x+1)). - Colin Barker, Oct 28 2014

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009
Name and Mathematica code corrected by Colin Barker, Oct 28 2014

A152836 a(0)=-1; a(n)=n^a(n-1)-a(n-1)^n.

Original entry on oeis.org

-1, 2, 0, 1, 3, -118
Offset: 0

Views

Author

Keywords

Comments

Sequence is finite because followup terms are fractions. - R. J. Mathar, Jun 19 2021

Crossrefs

Programs

  • Mathematica
    lst={};a=1;Do[a=n^a-a^n;AppendTo[lst,a],{n,0,5}];lst
    nxt[{n_,a_}]:={n+1,(n+1)^a-a^(n+1)}; NestList[nxt,{0,-1},5][[All,2]] (* Harvey P. Dale, Jun 06 2022 *)

Extensions

Definition corrected by N. J. A. Sloane, Jan 11 2009
Offset corrected. R. J. Mathar, Jun 19 2021

A152837 a(0)=-1; a(n)=Floor[n^a(n-1)-a(n-1)^n].

Original entry on oeis.org

-1, 2, 0, 1, 3, -118, -2699554153024, 1044826807337428519663920677057429215016680080584103502827667086054551857192770337767423
Offset: 0

Views

Author

Keywords

Examples

			a(1) = 1^(-1)-(-1)^1 = 2. - R. J. Mathar, Jan 08 2009
		

Crossrefs

Programs

  • Mathematica
    lst={};a=1;Do[a=n^a-a^n;AppendTo[lst,Floor[a]],{n,0,7}];lst

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009

A152838 a(0)=1; a(n)=Floor[a(n-1)^n-n^a(n-1)].

Original entry on oeis.org

1, 0, -1, -2, 3, 118, -199068134034785153195409370979964879499768447341765846329146257207125965412281784631240438088
Offset: 0

Views

Author

Keywords

Examples

			a(1) = 1^1-1^1 = 0. - R. J. Mathar, Jan 08 2009
		

Crossrefs

Programs

  • Mathematica
    lst={};a=1;Do[a=a^n-n^a;AppendTo[lst,Floor[a]],{n,0,6}];lst

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009

A152839 a(0) = 0; a(n) = n! - a(n-1)!.

Original entry on oeis.org

0, 0, 1, 5, -96
Offset: 0

Views

Author

Keywords

Crossrefs

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009
Definition corrected by Georg Fischer, Jun 03 2025

A152840 a(0) = -1; a(n) = n^(n+a(n-1)) - a(n-1)^(n+a(n-1)).

Original entry on oeis.org

-1, 0, 4, -14197
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};a=1;Do[a=n^(n+a)-a^(n+a);AppendTo[lst,a],{n,0,3}];lst

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009
Definition corrected by Georg Fischer, Jun 03 2025

A152841 a(0)=1; a(n)=Floor[n^(n+a(n-1))-a(n-1)^(n+a(n-1))].

Original entry on oeis.org

1, 0, -4, -1, -115, -1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};a=1;Do[a=a^(n+a)-n^(n+a);AppendTo[lst,Floor[a]],{n,0,5}];lst

Extensions

Indices added to definition, offset corrected - R. J. Mathar, Jan 08 2009
Showing 1-7 of 7 results.