cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152994 Nine times hexagonal numbers: a(n) = 9*n*(2*n-1).

Original entry on oeis.org

0, 9, 54, 135, 252, 405, 594, 819, 1080, 1377, 1710, 2079, 2484, 2925, 3402, 3915, 4464, 5049, 5670, 6327, 7020, 7749, 8514, 9315, 10152, 11025, 11934, 12879, 13860, 14877, 15930, 17019, 18144, 19305, 20502, 21735, 23004, 24309, 25650, 27027, 28440, 29889, 31374
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Sep 18 2011

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

a(n) = 18*n^2 - 9*n = A000384(n)*9 = A094159(n)*3.
a(n) = a(n-1) + 36*n - 27 for n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
a(n) = Sum_{i = 2..10} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 9*x*(1+3*x)/(1-x)^3.
E.g.f.: 9*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi - 2*log(2))/18. (End)