cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023222 Primes p such that 6*p + 7 is also prime.

Original entry on oeis.org

2, 5, 11, 17, 29, 31, 37, 61, 67, 71, 89, 101, 109, 127, 137, 167, 181, 191, 199, 229, 241, 257, 269, 277, 281, 311, 331, 337, 347, 359, 379, 389, 397, 419, 431, 457, 491, 499, 509, 541, 571, 577, 587, 601, 617, 631, 641, 647, 691, 709, 739, 751, 757, 769, 787, 797, 809
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A153218 and A000040.
Cf. A153219.

Programs

A153219 Numbers n such that 6*n + 7 is not prime.

Original entry on oeis.org

3, 7, 8, 13, 14, 18, 19, 21, 23, 27, 28, 30, 33, 35, 38, 40, 41, 42, 43, 47, 48, 49, 52, 53, 56, 58, 59, 63, 64, 66, 68, 70, 73, 74, 77, 78, 79, 81, 83, 84, 85, 87, 88, 91, 92, 93
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2008

Keywords

Comments

One less than the associated entry in A046954. - R. J. Mathar, Jan 05 2011

Examples

			Distribution of the terms in the following triangular array:
*;
*,3;
*,*,7;
*,*,*,*;
*,8,*,*,19;
*,*,14,*,*,27;
*,*, *,*,*, *,*;
*,13,*,*,30,*,*,47;
*,*,21,*,*,40,*,*,59;
*,*,*, *,*, *,*,*, *,*;
*,18,*,*,41,*,*,64,*,*,87;
*,*,28,*,*,53,*,*,78,*,*,103; etc.
where * marks the non-integer values of (2*h*K + k + h - 3)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Cf. A153218.

Programs

  • Magma
    [n: n in [0..110] | not IsPrime(6*n+7)]; // Vincenzo Librandi, Jan 12 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[6 # + 7] &] (* Vincenzo Librandi, Jan 12 2013 *)

A307562 Numbers k such that both 6*k + 1 and 6*k + 7 are prime.

Original entry on oeis.org

1, 2, 5, 6, 10, 11, 12, 16, 17, 25, 26, 32, 37, 45, 46, 51, 55, 61, 62, 72, 76, 90, 95, 100, 101, 102, 121, 122, 125, 137, 142, 146, 165, 172, 177, 181, 186, 187, 205, 215, 216, 220, 237, 241, 242, 247, 257, 270, 276, 277, 282, 290, 291, 292, 296, 297, 310, 311, 312, 331, 332, 335, 347, 355, 356, 380, 381, 390
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 138 such numbers between 1 and 1000.
Prime pairs that differ by 6 are called "sexy" primes. Other prime pairs that differ by 6 are of the form 6n - 1 and 6n + 5.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd - c - d, 6cd + c + d - 1 or 6cd + c + d, that is, they are not (6c - 1)d - c - 1, (6c - 1)d - c, (6c + 1)d + c - 1 or (6c + 1)d + c.

Examples

			a(3) = 5, so 6(5) + 1 = 31 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

For the primes see A023201, A046117.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024899 and A153218.
Cf. also A307561, A307563.

Programs

  • Mathematica
    Select[Range[400], AllTrue[6 # + {1, 7}, PrimeQ] &] (* Michael De Vlieger, Apr 15 2019 *)
  • PARI
    isok(n) = isprime(6*n+1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A307563 Numbers k such that both 6k - 1 and 6k + 7 are prime.

Original entry on oeis.org

1, 2, 4, 5, 9, 10, 12, 15, 17, 22, 25, 29, 32, 39, 44, 45, 60, 65, 67, 72, 75, 80, 82, 94, 95, 99, 100, 109, 114, 117, 120, 124, 127, 137, 152, 155, 164, 169, 172, 177, 185, 194, 199, 204, 205, 214, 215, 220, 229, 240, 242, 247, 254, 260, 262, 267, 269, 270, 289, 304, 312, 330, 334, 347, 355, 359, 369, 374, 379, 389
Offset: 1

Views

Author

Sally Myers Moite, Apr 14 2019

Keywords

Comments

There are 140 such numbers between 1 and 1000.
These numbers correspond to all the prime pairs which differ by 8 except 3 and 11.
Numbers in this sequence are those which are not 6cd - c - d - 1, 6cd + c - d, 6cd - c + d or 6cd + c + d - 1, that is, they are not (6c - 1)d - c - 1, (6c - 1)d + c, (6c + 1)d - c or (6c + 1)d + c - 1.

Examples

			a(4) = 5, so 6(5) - 1 = 29 and 6(5) + 7 = 37 are both prime.
		

Crossrefs

The primes are A023202, A092402, A031926.
Similar sequences for twin primes are A002822, A067611, for "cousin" primes A056956, A186243.
Intersection of A024898 and A153218.
Cf. also A307561, A307562.

Programs

  • Maple
    select(t -> isprime(6*t-1) and isprime(6*t+7), [$1..500]); # Robert Israel, May 27 2019
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+7); \\ Michel Marcus, Apr 16 2019

A023258 Primes that remain prime through 2 iterations of function f(x) = 6x + 7.

Original entry on oeis.org

5, 17, 29, 37, 89, 127, 199, 229, 269, 347, 359, 379, 397, 499, 769, 809, 929, 947, 977, 1049, 1087, 1129, 1277, 1279, 1367, 1409, 1439, 1489, 1499, 1607, 1609, 1787, 2017, 2039, 2089, 2399, 2539, 2707, 2819, 2837, 2957, 3089, 3109, 3217, 3229, 3389, 3499
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+7 and 36*p+49 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023222, A153218. - John Cerkan, Sep 14 2016

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(6*n+7) and IsPrime(36*n+49)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    nrpQ[n_]:=AllTrue[Rest[NestList[6#+7&,n,2]],PrimeQ]; Select[Prime[ Range[ 500]],nrpQ] (* Harvey P. Dale, Oct 12 2020 *)

Formula

a(n) = 7 or 9 (mod 10) for n > 1. - John Cerkan, Sep 14 2016

A023289 Primes that remain prime through 3 iterations of function f(x) = 6x + 7.

Original entry on oeis.org

5, 37, 127, 347, 977, 2017, 3607, 5477, 9137, 10487, 13687, 14057, 14107, 19037, 19697, 19727, 20507, 22157, 23887, 24097, 25237, 25307, 26717, 26777, 27107, 29347, 30697, 33757, 33997, 34667, 34847, 35117, 35227, 37057, 40577, 40627, 41177, 41597
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+7, 36*p+49 and 216*p+301 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023222, A023258, and A153218.

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(6*n+7) and IsPrime(36*n+49) and IsPrime(216*n+301)] // Vincenzo Librandi, Aug 04 2010

Formula

a(n) == 7 (mod 10), for n > 1. - John Cerkan, Sep 21 2016
Showing 1-6 of 6 results.