cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153234 a(n) = floor(2^n/9).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 14, 28, 56, 113, 227, 455, 910, 1820, 3640, 7281, 14563, 29127, 58254, 116508, 233016, 466033, 932067, 1864135, 3728270, 7456540, 14913080, 29826161, 59652323, 119304647, 238609294, 477218588, 954437176, 1908874353, 3817748707, 7635497415, 15270994830
Offset: 0

Views

Author

Paul Curtz, Dec 21 2008

Keywords

Comments

Partial sums of A113405. - Mircea Merca, Dec 28 2010
Dubickas proves that infinitely many terms of this sequence are composite. - Charles R Greathouse IV, Feb 04 2016
Parity from a(4) onward gives A088911 (Period 6: repeat [1, 1, 1, 0, 0, 0]). - Jeremy Gardiner, Nov 04 2020

Crossrefs

Cf. A113405.

Programs

Formula

a(n+1) - 2*a(n) = A088911(n+3).
a(n) + a(n+3) = 2^n - 1 = A000225(n), n > 0.
From Mircea Merca, Dec 28 2010: (Start)
a(n) = round((2*2^n-9)/18) = floor((2^n-1)/9) = ceiling((2^n-8)/9).
a(n) = a(n-6) + 7*2^(n-6), n > 5. (End)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + 3*a(n-4) - 2*a(n-5).
G.f.: x^4 / ( (1-2*x)*(1-x^2)*(1-x+x^2) ).
a(n) + a(n+1) = A111927(n). - R. J. Mathar, Apr 08 2013

Extensions

More terms from Vincenzo Librandi, Jun 25 2011