A153379 Larger of two consecutive prime numbers, p1 and p2 = p1 + d, such that p1*p2*d - d is the average of twin primes.
1193, 8923, 13997, 31847, 33113, 56039, 57593, 66593, 85843, 87803, 90583, 91229, 93503, 101323, 103183, 111697, 113123, 127453, 141403, 142897, 150373, 150413, 151673, 152623, 156823, 157133, 161983, 176849, 179743, 186013, 205963, 209431
Offset: 1
Keywords
Examples
1193 since 1187 and 1193 = 1187 + 6 are consecutive primes, 1187*1193*6 - 6 = 8496540, and (8496539, 8496541) are twin primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[q:p in PrimesUpTo(210000)| IsPrime(a-1) and IsPrime(a+1) where a is (p*q-1)*(q-p) where q is NextPrime(p)]; // Marius A. Burtea, Jan 03 2020
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];d=p2-p1;a=p1*p2*d-d;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p2]],{n,8!}];lst l2cpQ[{a_,b_}]:=Module[{d=b-a},AllTrue[a*b*d-d+{1,-1},PrimeQ]]; Transpose[ Select[ Partition[Prime[Range[20000]],2,1],l2cpQ]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 18 2015 *)
Extensions
Name edited by Amiram Eldar, Jan 03 2020
Comments