A153438 Least k > 1 such that k^(3^n)*(k^(3^n)+1) + 1 is prime.
2, 2, 2, 21, 209, 72, 260, 17, 3311, 4469, 94259, 55599
Offset: 0
Links
- Lei Zhou, Prime Database Entry, July 04, 2014.
- R. Propper and S. Batalov, Prime Database Entry, Nov 17, 2023.
Programs
-
Mathematica
Table[i = 1; m = 3^u; While[i++; cp = 1 + i^m + i^(2*m); ! PrimeQ[cp]]; i, {u, 1, 7}] (* Lei Zhou, Feb 01 2012 *)
-
PARI
a(n) = my(k=2); while (!isprime(k^(3^n)*(k^(3^n)+1) + 1), k++); k; \\ Michel Marcus, Jan 01 2023
Formula
a(n) = A085398(3^(n+1)). - Jinyuan Wang, Jan 01 2023
Extensions
3311 from Lei Zhou using OpenPFGW, Feb 01 2012
4469 from Lei Zhou using OpenPFGW, Feb 09 2012
New term, 94259, from Lei Zhou using OpenPFGW, Jul 04 2014
Name and Comment corrected by Robert Price, Nov 11 2018
a(0) inserted by Jinyuan Wang, Jan 01 2023
a(11) from Ryan Propper and Serge Batalov, Nov 17 2023
Comments