A153644 a(n) = 4*n^2 + 28*n + 10.
42, 82, 130, 186, 250, 322, 402, 490, 586, 690, 802, 922, 1050, 1186, 1330, 1482, 1642, 1810, 1986, 2170, 2362, 2562, 2770, 2986, 3210, 3442, 3682, 3930, 4186, 4450, 4722, 5002, 5290, 5586, 5890, 6202, 6522, 6850, 7186, 7530, 7882, 8242, 8610, 8986, 9370
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[4*n^2 + 28*n + 10: n in [1..50]]; // Vincenzo Librandi, Jan 25 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{42,82,130}, 25] (* G. C. Greubel, Aug 23 2016 *) Table[4n^2+28n+10,{n,70}] (* Harvey P. Dale, Jan 15 2023 *)
-
PARI
a(n)=4*n*(n+7)+10 \\ Charles R Greathouse IV, Jan 24 2012
Formula
From Colin Barker, Jan 24 2012: (Start)
a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)
E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
Sum_{n>=1} 1/a(n) = 62/1995 + tan(sqrt(39)*Pi/2)*Pi/(4*sqrt(39)). - Amiram Eldar, Mar 02 2023
Comments