cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153703 Partial sums of A069996.

Original entry on oeis.org

1, 13, 94, 526, 2551, 11299, 47020, 186988, 718429, 2686729, 9831658, 35340826, 125154355, 437641663, 1513809688, 5187129880, 17627632249, 59469045061, 199327841590, 664232428390, 2201904349231, 7264715299483, 23865295832644, 78091766836996
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2010

Keywords

Comments

The first differences are in the third row of the square array of A072590.
The general formula for the partial sums of the sequence 1, 4*m, 9*m^2, 16*m^3, 25*m^4,...,n^2*m^(n-1),... is (n^2*m^(n+2)-(2*n*(n+1)-1)*m^(n+1)+(n+1)^2*m^n-m-1)/(m-1)^3 with m>1 (see also References).

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Apr / May, 1913 - p. 99 (Problem 1277, case x=3).

Crossrefs

Programs

  • Magma
    [(3^n*(n^2-n+1)-1)/2: n in [1..25]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    CoefficientList[Series[(1 + 3 x) / ((1 - x) (1 - 3 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    a(n) = (3^n*(n^2-n+1)-1)/2 \\ Michel Marcus, Jun 07 2013
    

Formula

a(n) = (3^n*(n^2 - n + 1) - 1)/2.
G.f.: x*(1+3*x)/((1-x)*(1-3*x)^3).
a(n) = 10*a(n-1) - 36*a(n-2) + 54*a(n-3) - 27a(n-4) for n>4.
a(n) = 9*A027472(n+1) + A003462(n) for n>2.
E.g.f.: (1/2)*((1 + 9*x^2)*exp(x) - exp(-x))*exp(2*x). - G. C. Greubel, Aug 24 2016