cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023264 Primes that remain prime through 2 iterations of function f(x) = 8x + 9.

Original entry on oeis.org

23, 43, 83, 109, 193, 379, 389, 569, 643, 659, 853, 1063, 1129, 1283, 1423, 1493, 1759, 1789, 1889, 2003, 2129, 2293, 2459, 2713, 2729, 2879, 2969, 3373, 3823, 4519, 4603, 4649, 4663, 4703, 4783, 4789, 5023, 5153, 5209, 5639, 5653, 5669, 5693, 5783, 6203
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+9 and 64*p+81 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023232 and of A153762.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(8*n+9) and IsPrime(64*n+81)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime[Range[1000]],AllTrue[Rest[NestList[8#+9&,#,2]],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 26 2016 *)

Formula

a(n) == 3 or 9 (mod 10). - John Cerkan, Sep 16 2016

A153768 Numbers n such that n, 8n-9 and 8n+9 are primes.

Original entry on oeis.org

11, 29, 31, 109, 199, 251, 269, 379, 419, 521, 599, 601, 661, 881, 991, 1091, 1231, 1289, 1789, 1831, 1861, 1901, 1949, 2239, 2689, 2969, 3181, 3251, 3301, 3359, 3499, 3779, 3821, 4099, 4201, 4339, 4561, 4651, 4679, 4789, 4871, 5281, 5471, 5641, 5659
Offset: 1

Views

Author

Vincenzo Librandi, Jan 01 2009

Keywords

Examples

			For n=11, even 8n-9=79 and 8n+9=97 are primes, therefore 11 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6000) | IsPrime(8*p-9) and IsPrime(8*p+9)]; // Vincenzo Librandi, Apr 05 2013
  • Mathematica
    lst={}; Do[p=Prime[n]; If[PrimeQ[8*p-9]&&PrimeQ[8*p+9],AppendTo[lst,p]],{n,7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 16 2009 *)
    Select[Prime[Range[6000]], PrimeQ[8 # - 9] && PrimeQ[8 # + 9] &] (* Vincenzo Librandi, Apr 05 2013 *)
    Select[Prime[Range[800]],AllTrue[8#+{9,-9},PrimeQ]&] (* Harvey P. Dale, Apr 05 2023 *)

Extensions

241 replaced by 251 and extended by R. J. Mathar, Jan 07 2009

A023295 Primes that remain prime through 3 iterations of function f(x) = 8x + 9.

Original entry on oeis.org

23, 643, 2293, 5023, 5653, 9643, 10723, 11503, 12823, 15493, 18353, 18773, 28403, 32003, 32183, 41953, 42853, 45233, 49853, 50873, 52103, 53113, 54623, 56123, 76003, 80803, 84443, 86783, 88813, 89413, 92033, 95213, 96823, 97943, 100613, 115793
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+9, 64*p+81 and 512*p+657 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023232, A023264, and of A153762.

Programs

  • Magma
    [n: n in [1..450000] | IsPrime(n) and IsPrime(8*n+9) and IsPrime(64*n+81) and IsPrime(512*n+657)]; // Vincenzo Librandi, Aug 04 2010

A023351 Primes that remain prime through 5 iterations of function f(x) = 8x + 9.

Original entry on oeis.org

294793, 2586943, 5360623, 6351613, 7965743, 11141083, 11378453, 13458923, 14884823, 15585523, 18691633, 25387763, 29964293, 30766283, 32388253, 38647723, 40653433, 48716873, 48786593, 52628473, 54270533, 55507853, 56575633, 59103403
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+9, 64*p+81, 512*p+657, 4096*p+5265 and 32768*p+42129 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023232, A023264, A023295, A023323, and of A153762.

Programs

  • Magma
    [n: n in [1..19000000] | IsPrime(n) and IsPrime(8*n+9) and IsPrime(64*n+81) and IsPrime(512*n+657) and IsPrime(4096*n+5265) and IsPrime(32768*n+42129)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    prp5Q[n_]:=AllTrue[Rest[NestList[8#+9&,n,5]],PrimeQ]; Select[Prime[Range[3513000]],prp5Q] (* Harvey P. Dale, May 25 2024 *)
    prp5Q2[n_] := AllTrue[NestList[8 # + 9 &, n, 5], PrimeQ]; Select[Range[23, 59120000, 70], prp5Q2] (* Faster  than the first Mathematica program above. *) (* Harvey P. Dale, May 25 2024 *)

Formula

a(n) == 23 (mod 70). - John Cerkan, Nov 13 2016

A153763 Numbers k >= 0 such that 8*k+9 is not prime.

Original entry on oeis.org

0, 2, 3, 5, 6, 7, 9, 12, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 30, 32, 33, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 51, 52, 54, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 72, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93
Offset: 1

Views

Author

Vincenzo Librandi, Jan 01 2009

Keywords

Examples

			Distribution of the terms in the following triangular array:
0;
*,2;
*,*,5;
*,*,*,9;
3,*,*,*,14;
*,7,*,*,*,20;
*,*,12,*,*,*,27;
*,*,*,18,*,*,*,35;
6,*,*,*,25,*,*,*,44;
*,12,*,*,*,33,*,*,*,54;
*,*,19,*,*,*,42,*,*,*,65; etc.
where * marks the non-integer values of (2*h*k + k + h - 4)/4 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(8*n+9)]; // Vincenzo Librandi, Jan 14 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[8 # + 9] &] (* Vincenzo Librandi, Jan 14 2013 *)
Showing 1-5 of 5 results.