A153783 3 times 11-gonal (or hendecagonal) numbers: a(n) = 3*n*(9*n-7)/2.
0, 3, 33, 90, 174, 285, 423, 588, 780, 999, 1245, 1518, 1818, 2145, 2499, 2880, 3288, 3723, 4185, 4674, 5190, 5733, 6303, 6900, 7524, 8175, 8853, 9558, 10290, 11049, 11835, 12648, 13488, 14355, 15249, 16170, 17118, 18093, 19095
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,3,6!,27}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *) Table[3*n*(9*n-7)/2, {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,3,33},25] (* G. C. Greubel, Aug 28 2016 *)
-
PARI
a(n)=3*n*(9*n-7)/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (27*n^2 - 21*n)/2 = A051682(n)*3.
a(n) = 27*n + a(n-1) - 24, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 8*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*x*(2 + 9*x)*exp(x). (End)