cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153785 5 times heptagonal numbers: a(n) = 5*n*(5*n-3)/2.

Original entry on oeis.org

0, 5, 35, 90, 170, 275, 405, 560, 740, 945, 1175, 1430, 1710, 2015, 2345, 2700, 3080, 3485, 3915, 4370, 4850, 5355, 5885, 6440, 7020, 7625, 8255, 8910, 9590, 10295, 11025, 11780, 12560, 13365, 14195, 15050, 15930, 16835, 17765
Offset: 0

Views

Author

Omar E. Pol, Jan 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,5,8!,25}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
    Table[5*n*(5*n - 3)/2, {n,0,25}] (* or *) LinearRecurrence[{3,-3,1}, {0,5,35}, 25] (* G. C. Greubel, Aug 28 2016 *)
  • PARI
    a(n) = 5*n*(5*n-3)/2; \\ Michel Marcus, Aug 28 2016

Formula

a(n) = (25*n^2 - 15*n)/2 = A000566(n)*5.
a(n) = 25*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 5*x*(1 + 4*x)/(1 - x)^3.
E.g.f.: (5/2)*x*(2 + 5*x)*exp(x). (End)