cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153793 13 times pentagonal numbers: a(n) = 13*n*(3*n-1)/2.

Original entry on oeis.org

0, 13, 65, 156, 286, 455, 663, 910, 1196, 1521, 1885, 2288, 2730, 3211, 3731, 4290, 4888, 5525, 6201, 6916, 7670, 8463, 9295, 10166, 11076, 12025, 13013, 14040, 15106, 16211, 17355, 18538, 19760, 21021, 22321, 23660, 25038, 26455
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Crossrefs

Programs

  • Magma
    [13*n*(3*n-1)/2: n in [0..60]]; // Wesley Ivan Hurt, Aug 29 2016
  • Maple
    A153793:=n->13*n*(3*n-1)/2: seq(A153793(n), n=0..60); # Wesley Ivan Hurt, Aug 29 2016
  • Mathematica
    Table[13*n*(3*n-1)/2, {n,0,25}] (* or *) LinearRecurrence[{3,-3,1}, {0,13,65}, 25] (* G. C. Greubel, Aug 29 2016 *)
    13*PolygonalNumber[5,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 16 2016 *)
  • PARI
    a(n) = (39*n^2 - 13*n)/2; \\ Altug Alkan, Aug 29 2016
    

Formula

a(n) = (39*n^2 - 13*n)/2 = 13*A000326(n).
a(n) = 39*n + a(n-1) - 26 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 13*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
E.g.f.: (13/2)*x*(2+3*x)*exp(x). (End)