A153794 4 times octagonal numbers: a(n) = 4*n*(3*n-2).
0, 4, 32, 84, 160, 260, 384, 532, 704, 900, 1120, 1364, 1632, 1924, 2240, 2580, 2944, 3332, 3744, 4180, 4640, 5124, 5632, 6164, 6720, 7300, 7904, 8532, 9184, 9860, 10560, 11284, 12032, 12804, 13600, 14420, 15264, 16132, 17024
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,4,7!,24}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *) Table[4n(3n-2),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,4,32},41] (* Harvey P. Dale, Jul 14 2011 *) 4*PolygonalNumber[8,Range[0,40]] (* Harvey P. Dale, Dec 04 2022 *)
-
PARI
a(n) = 12*n^2 - 8*n; \\ Altug Alkan, Aug 29 2016
Formula
a(n) = 24*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=4, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 14 2011
G.f.: 4*(x + 5*x^2)/(1-x)^3. - Harvey P. Dale, Jul 14 2011
E.g.f.: 4*x*(1 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016
Comments