A153810 Decimal expansion of 1 - gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).
4, 2, 2, 7, 8, 4, 3, 3, 5, 0, 9, 8, 4, 6, 7, 1, 3, 9, 3, 9, 3, 4, 8, 7, 9, 0, 9, 9, 1, 7, 5, 9, 7, 5, 6, 8, 9, 5, 7, 8, 4, 0, 6, 6, 4, 0, 6, 0, 0, 7, 6, 4, 0, 1, 1, 9, 4, 2, 3, 2, 7, 6, 5, 1, 1, 5, 1, 3, 2, 2, 7, 3, 2, 2, 2, 3, 3, 5, 3, 2, 9, 0, 6, 3, 0, 5, 2, 9, 3, 6, 7, 0, 8, 2, 5, 3, 2, 5, 0, 4, 8, 5, 3, 6, 8
Offset: 0
Examples
0.422784335...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
- Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (C5.2)
- Friedrich Pillichshammer, Euler's constant and averages of fractional parts.
- Charles Jean de la Vallée Poussin, Sur les valeurs moyennes de certaines fonctions arithmétiques, Annales de la société scientifique de Bruxelles 22 (1898), pp. 84-90.
- Wikipedia, Digamma function.
Crossrefs
Cf. A001620.
Programs
-
Mathematica
RealDigits[N[PolyGamma[2], 105]][[1]] (* Arkadiusz Wesolowski, Jan 10 2013 *) RealDigits[1 - EulerGamma, 10, 50][[1]] (* G. C. Greubel, Aug 29 2016 *)
-
PARI
1-Euler \\ Charles R Greathouse IV, Apr 11 2012
Formula
Equals Integral_{x>=1} {x}dx/x^2 dx, where {x} is the fractional part of x. - Charles R Greathouse IV, Apr 11 2012
Equals Integral_{x>=0} x*log(x)*exp(-x) dx. - Jean-François Alcover, Jun 17 2013
Equals Sum_{n>=2} (zeta(n)-1)/n. - Vaclav Kotesovec, Dec 11 2015
Equals Sum_{k>=1} zeta(2*k+1)/((k+1)*(2*k+1)). - Amiram Eldar, May 24 2021
Equals Sum_{j>=2} Sum_{k>=2} (1/(k * j^k)). - Mike Tryczak, Apr 07 2023
Equals Integral_{x=0..1} {1/x} dx, where {x} is the fractional part of x. From this expression we have 1 - gamma = Sum_{k>=1} Integral_{x=1/(k+1)..1/k} (1/x - k) dx = Sum_{k>=1} (log(1+1/k) - 1/(k+1)). - Jianing Song, Mar 24 2024
Equals Integral_{x>=0} (1/x - 1/(exp(x) - 1))*exp(-x) dx. - Kritsada Moomuang, May 27 2025
Comments