cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A345208 Decimal expansion of log(2*Pi) - gamma - 1, where gamma is Euler's constant (A001620).

Original entry on oeis.org

2, 6, 0, 6, 6, 1, 4, 0, 1, 5, 0, 7, 8, 1, 2, 6, 2, 2, 9, 5, 4, 1, 4, 7, 3, 8, 2, 7, 2, 8, 8, 3, 2, 8, 4, 8, 6, 8, 0, 6, 3, 5, 6, 1, 1, 3, 3, 5, 6, 4, 3, 2, 2, 6, 8, 2, 8, 5, 3, 5, 8, 4, 6, 0, 8, 0, 6, 6, 3, 6, 6, 5, 0, 7, 6, 8, 5, 6, 1, 2, 4, 4, 5, 2, 5, 3, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Comments

The first two formulae (in the Formula section) are similar to the sum and integral lim_{n->oo} (1/n) * Sum_{k=1..n} frac(n/k) = Integral_{x=0..1} frac(1/x) dx = 1 - gamma (A153810).
The second raw moment of the distribution of the fractional part of 1/x, where x is chosen uniformly at random from (0, 1]. Since the expected value is 1 - gamma, the second central moment, or variance, is log(2*Pi) - gamma - 1 - (1 - gamma)^2 = log(2*Pi) - gamma^2 + gamma - 2 = 0.081914807503... and the standard deviation is sqrt(log(2*Pi) - gamma^2 + gamma - 2) = 0.2862076300...

Examples

			0.26066140150781262295414738272883284868063561133564...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 3.42, pages 145 and 195.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2*Pi] - EulerGamma - 1, 10, 100][[1]]

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=1..n} frac(n/k)^2, where frac(x) = x - floor(x) is the fractional part of x.
Equals Integral_{x=0..1} frac(1/x)^2 dx.
Equals 2 * Sum_{k>=2} (zeta(k)-1)/(k*(k+1)).
Equals A061444 - A001620 - 1.
Equals -2 * Sum_{k>=1} (H(k) - log(k) - gamma - 1/(2*k)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2013). - Amiram Eldar, Mar 26 2022

A242493 a(n) is the number of not-sqrt-smooth numbers ("jagged" numbers) not exceeding n. This is the counting function of A064052.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 32, 32, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 41, 41, 41, 42, 43, 44, 45
Offset: 1

Views

Author

Jean-François Alcover, May 16 2014

Keywords

Comments

This sequence is different from shifted A072490, after 22 terms.

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
  • Daniel H. Greene and Donald E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed., Birkhäuser, 1990, pp. 95-98.

Crossrefs

Programs

  • Mathematica
    jaggedQ[n_] := jaggedQ[n] = (f = FactorInteger[n][[All, 1]]; s = Sqrt[n]; Count[f, p_ /; p > s] > 0); a[n_] := ( For[ cnt = 0; j = 2, j <= n, j++, If[jaggedQ[j], cnt++]]; cnt); Table[a[n], {n, 1, 100}]
  • Python
    from math import isqrt
    from sympy import primepi
    def A242493(n): return sum(primepi(n//i)-primepi(i) for i in range(1,isqrt(n)+1)) # Chai Wah Wu, Sep 01 2024

Formula

From Ridouane Oudra, Nov 07 2019: (Start)
a(n) = Sum_{i=1..floor(sqrt(n))} (pi(floor(n/i)) - pi(i)).
a(n) = Sum_{p<=sqrt(n)} (p-1) + Sum_{sqrt(n)
a(n) = n - A064775(n). (End)
a(n) ~ log(2)*n - A153810 * n/log(n) - A242610 * n/log(n)^2 + O(n/log(n)^3) (Greene and Knuth, 1990). - Amiram Eldar, Apr 15 2021

A386734 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} {1/(x+y+z)} dx dy dz, where {} denotes fractional part.

Original entry on oeis.org

1, 8, 3, 8, 4, 3, 7, 6, 4, 0, 6, 7, 0, 2, 4, 6, 1, 2, 0, 7, 5, 3, 4, 1, 7, 5, 6, 6, 4, 6, 5, 8, 1, 2, 6, 7, 0, 7, 8, 2, 1, 3, 5, 5, 7, 8, 7, 0, 5, 9, 1, 5, 6, 7, 1, 8, 5, 9, 0, 8, 6, 6, 6, 7, 3, 7, 4, 4, 3, 4, 8, 4, 7, 7, 2, 4, 1, 5, 5, 1, 2, 2, 0, 2, 8, 6, 2, 9, 9, 7, 8, 7, 8, 6, 1, 4, 6, 4, 5, 2, 2, 0, 7, 5, 6
Offset: 0

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.18384376406702461207534175664658126707821355787059...
		

Programs

  • Mathematica
    RealDigits[9*Log[3]/2 - 6*Log[2] - Zeta[3]/2, 10, 120][[1]]
  • PARI
    9*log(3)/2 - 6*log(2) - zeta(3)/2

Formula

Equals 9*log(3)/2 - 6*log(2) - zeta(3)/2.

A109996 Primes p such that the arithmetic mean of the fractional parts of p/1, p/2, ..., p/p is larger than 1 - gamma = 0.422784...

Original entry on oeis.org

23, 47, 53, 59, 71, 83, 89, 107, 131, 139, 149, 167, 179, 191, 223, 227, 239, 251, 263, 269, 293, 311, 317, 347, 349, 359, 383, 389, 419, 431, 439, 449, 461, 467, 479, 491, 503, 509, 557, 569, 571, 587, 593, 599, 607, 619, 643, 647, 659, 683, 701, 719, 727
Offset: 1

Author

Stefan Krämer, Sep 01 2005

Keywords

References

  • S. R. Finch. Mathematical Constants. Cambridge University Press, 2003 ISBN 0-521-81802-2 p. 29.
  • Stefan Kraemer. Eulers constant and related numbers, preprint, 2005.

Crossrefs

Cf. A153810 (1-gamma).

Programs

  • Maple
    H:= proc(n) H(n):= 1/n+`if`(n=1, 0, H(n-1)) end:
    a:= proc(n) option remember; local c, p; Digits := 1000;
          c:= evalf(1-gamma);
          p:=`if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if H(p)-add(iquo(p, i), i=1..p)/p>c
             then return p fi
          od
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Jun 14 2013
  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[Mean[FractionalPart /@ (p/Range[p])] > 1-EulerGamma, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 28 2021 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (sum (i=1, p, p/i - floor(p/i))/p > 1- Euler, print1(p, ", ")););} \\ Michel Marcus, Jun 14 2013

A242610 Decimal expansion of 1-gamma-gamma(1), a constant related to the asymptotic expansion of j(n), the counting function of "jagged" numbers, where gamma is Euler-Mascheroni constant and gamma(1) the first Stieltjes constant.

Original entry on oeis.org

4, 9, 5, 6, 0, 0, 1, 8, 0, 5, 8, 2, 1, 4, 3, 8, 6, 4, 2, 5, 4, 0, 7, 4, 2, 8, 5, 7, 9, 2, 4, 9, 8, 8, 8, 8, 0, 9, 5, 5, 7, 7, 0, 0, 2, 3, 9, 4, 4, 1, 4, 3, 5, 3, 7, 9, 3, 2, 3, 9, 3, 2, 4, 8, 5, 6, 5, 3, 3, 7, 0, 6, 7, 9, 3, 8, 4, 6, 8, 1, 3, 9, 4, 1, 1, 3, 9, 8, 6, 4, 9, 5, 3, 0, 9, 7, 2, 6, 5, 0
Offset: 0

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			0.495600180582143864254074285792498888...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 2.17, p. 102.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - EulerGamma - StieltjesGamma[1], 10, 100] // First

Formula

j(n) = log(2)*n - (1-gamma)*n/log(n) - (1-gamma-gamma(1))*n/log(n)^2 + O(n/log(n)^3).
Equals -Integral_{x=0..1} frac(1/x)*log(x) dx (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022
Equals Integral_{x=0..1} Integral_{y=0..1} frac(1/(x*y)) dx dy (Furdui, 2013, section 2.43, p. 106). - Amiram Eldar, Jul 31 2025

A386733 Decimal expansion of Integral_{x=0..1} Integral_{y=0..1} {1/(x+y)} dx dy, where {} denotes fractional part.

Original entry on oeis.org

5, 6, 3, 8, 2, 7, 3, 2, 7, 6, 9, 5, 7, 7, 7, 4, 0, 0, 5, 9, 8, 2, 5, 6, 6, 5, 9, 5, 9, 3, 3, 4, 0, 5, 4, 1, 5, 4, 1, 5, 2, 5, 3, 1, 8, 1, 1, 7, 1, 1, 1, 2, 8, 9, 3, 7, 3, 5, 8, 0, 9, 0, 4, 3, 0, 1, 7, 8, 3, 5, 0, 8, 7, 3, 7, 7, 8, 8, 9, 9, 4, 2, 9, 4, 9, 1, 2, 2, 0, 3, 6, 8, 2, 9, 5, 8, 0, 2, 2, 4, 3, 2, 0, 0, 0, 8
Offset: 0

Author

Amiram Eldar, Aug 01 2025

Keywords

Examples

			0.56382732769577740059825665959334054154152531811711...
		

Programs

  • Mathematica
    RealDigits[2*Log[2] - Pi^2/12, 10, 120][[1]]
  • PARI
    2*log(2) - zeta(2)/2

Formula

Equals 2*log(2) - Pi^2/12 = A016627 - A072691.

A346367 Decimal expansion of (1 - gamma)*zeta(2), where gamma is Euler's constant (or the Euler-Mascheroni constant).

Original entry on oeis.org

6, 9, 5, 4, 5, 2, 3, 5, 5, 7, 3, 3, 2, 4, 4, 9, 1, 1, 9, 2, 6, 8, 5, 1, 0, 6, 4, 4, 1, 4, 3, 2, 0, 2, 5, 5, 5, 7, 8, 9, 4, 3, 9, 5, 1, 7, 3, 3, 1, 2, 8, 5, 8, 3, 2, 7, 2, 1, 6, 1, 2, 6, 2, 3, 4, 3, 3, 6, 2, 1, 9, 1, 1, 5, 4, 9, 9, 4, 1, 9, 1, 3, 0, 2, 6, 4, 5, 9, 2, 5, 2, 1, 1, 3, 4, 1, 2, 1, 9, 9, 0, 2, 2, 5, 7
Offset: 0

Author

Stefano Spezia, Jul 14 2021

Keywords

Examples

			0.695452355733244911926851064414320...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(1-EulerGamma)Zeta[2],10,105]]
  • PARI
    (1-Euler)*zeta(2) \\ Michel Marcus, Jul 16 2021

Formula

A386711 Decimal expansion of Sum_{k>=2} (zeta(k)-1)/(k+1).

Original entry on oeis.org

2, 9, 2, 4, 5, 3, 6, 3, 4, 3, 4, 4, 5, 6, 0, 8, 2, 7, 9, 1, 6, 4, 1, 4, 2, 1, 8, 5, 5, 3, 1, 8, 1, 1, 4, 4, 6, 1, 7, 5, 2, 2, 8, 5, 8, 3, 9, 2, 2, 5, 4, 7, 8, 7, 7, 7, 9, 9, 6, 4, 8, 4, 2, 0, 7, 4, 8, 0, 0, 4, 4, 0, 6, 8, 3, 9, 0, 7, 2, 6, 6, 8, 3, 6, 7, 8, 3, 1, 6, 9, 7, 1, 8, 1, 7, 2, 4, 2, 7, 6, 2, 0, 6, 7, 8, 6, 2, 9, 7, 5, 0, 4, 6, 2, 1, 2, 1, 3, 1, 3
Offset: 0

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.29245363434456082791641421855318114461752285839225...
		

References

  • Hari M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. See eq. (500), p. 314.

Crossrefs

Cf. A001620 (gamma), A061444.
Sum_{k>=2} (zeta(k)-1)/(k+m): A153810 (m=0), this constant (m=1), A386712 (m=2).

Programs

  • Mathematica
    RealDigits[3/2 - EulerGamma/2 - Log[2*Pi]/2, 10, 120][[1]]
  • PARI
    3/2 - Euler/2 - log(2*Pi)/2

Formula

Equals 3/2 - gamma/2 - log(2*Pi)/2 (Srivastava and Choi, 2001).
Equals -Sum_{k>=2} (k*log(1-1/k) + 1 + 1/(2*k)) (Shamos, 2011).

A386712 Decimal expansion of Sum_{k>=2} (zeta(k)-1)/(k+2).

Original entry on oeis.org

2, 2, 4, 4, 8, 0, 6, 2, 4, 4, 2, 7, 2, 4, 7, 7, 7, 9, 5, 8, 9, 6, 6, 0, 2, 4, 6, 4, 1, 4, 6, 8, 6, 9, 3, 0, 9, 2, 9, 8, 0, 9, 9, 8, 7, 0, 4, 5, 1, 7, 1, 8, 2, 0, 2, 4, 7, 8, 8, 1, 4, 3, 5, 1, 7, 4, 2, 2, 5, 6, 6, 2, 4, 8, 0, 3, 6, 3, 6, 9, 9, 8, 0, 7, 2, 2, 4, 1, 4, 6, 2, 6, 8, 4, 4, 6, 0, 4, 1, 4, 6, 3, 0, 2, 9
Offset: 0

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.22448062442724777958966024641468693092980998704517...
		

References

  • Hari M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. See eq. (543), p. 320.

Crossrefs

Cf. A001620 (gamma), A061444, A074962 (A), A225746.
Sum_{k>=2} (zeta(k)-1)/(k+m): A153810 (m=0), A386711 (m=1), this constant (m=2).

Programs

  • Mathematica
    RealDigits[11/6 - EulerGamma/3 - 2*Log[Glaisher] - Log[2*Pi]/2, 10, 120][[1]]
  • PARI
    11/6 - Euler/3 - 2*(1/12-zeta'(-1)) - log(2*Pi)/2

Formula

Equals 11/6 - gamma/3 - 2*log(A) - log(2*Pi)/2, where gamma is Euler's constant and A is the Glaisher-Kinkelin constant (Srivastava and Choi, 2001).
Equals -Sum_{k>=2} (k^2*log(1-1/k) + k + 1/(3*k) + 1/2) (Shamos, 2011).

A319026 Decimal expansion of Psi(3).

Original entry on oeis.org

9, 2, 2, 7, 8, 4, 3, 3, 5, 0, 9, 8, 4, 6, 7, 1, 3, 9, 3, 9, 3, 4, 8, 7, 9, 0, 9, 9, 1, 7, 5, 9, 7, 5, 6, 8, 9, 5, 7, 8, 4, 0, 6, 6, 4, 0, 6, 0, 0, 7, 6, 4, 0, 1, 1, 9, 4, 2, 3, 2, 7, 6, 5, 1, 1, 5, 1, 3, 2, 2, 7, 3, 2, 2, 2, 3, 3, 5, 3, 2, 9, 0, 6, 3
Offset: 0

Author

Patrick C. Schneider, Sep 08 2018

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			0.92278433509846713939348790...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(3.0)) ; - R. J. Mathar, Aug 29 2023
  • Mathematica
    RealDigits[3/2 - EulerGamma, 10, 100][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    psi(3)

Formula

Psi(3) = Psi(2) + 1/2 = 3/2 - gamma, with gamma = A001620 and Psi(2) = A153810. - Wolfdieter Lang, Oct 05 2018
Showing 1-10 of 12 results. Next