cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062550 a(n) = Sum_{k = 1..2n} floor(2n/k).

Original entry on oeis.org

0, 3, 8, 14, 20, 27, 35, 41, 50, 58, 66, 74, 84, 91, 101, 111, 119, 127, 140, 146, 158, 168, 176, 186, 198, 207, 217, 227, 239, 247, 261, 267, 280, 292, 300, 312, 326, 332, 344, 356, 368, 377, 391, 399, 411, 425, 435, 443, 459, 467, 482, 492, 502, 514, 528
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2001

Keywords

Comments

The sequence A006218 : Sum_{i=1..n} floor(n/i) = Sum_{i=1..n} sigma_0(i). Sigma_0(i) is A000005. Sequences of the type : Sum_{i=1..f(n)} floor(f(n)/i)= Sum_{i=1..f(n)} sigma_0(i). This sequence a(n)= A006218(2*n). [Ctibor O. Zizka, Mar 21 2009]
For n > 0: row sums of the triangle in A013942. - Reinhard Zumkeller, Jun 04 2013

Crossrefs

Programs

  • Haskell
    a062550 0 = 0
    a062550 n = sum $ a013942_row n  -- Reinhard Zumkeller, Jun 04 2013
    
  • Mathematica
    Table[Total[Floor[2*n/Range[2*n]]], {n, 0, 100}] (* T. D. Noe, Jun 12 2013 *)
  • PARI
    a(n) = sum(k=1, 2*n, (2*n)\k); \\ Michel Marcus, Oct 09 2021
  • Python
    from math import isqrt
    def A062550(n): return (lambda m: 2*sum(2*n//k for k in range(1, m+1))-m*m)(isqrt(2*n)) # Chai Wah Wu, Oct 09 2021
    

Formula

a(n) = A006218(2n) = A056549(n)+A006218(n) = a(n-1)+A000005(2n-1)+A000005(2n)

Extensions

Data corrected for n > 30 by Reinhard Zumkeller, Jun 04 2013

A158568 a(n) = Sum_{i=1..Fibonacci(n)} sigma_0(i) where sigma_0(n) is A000005(n).

Original entry on oeis.org

1, 1, 3, 5, 10, 20, 37, 70, 127, 231, 413, 746, 1307, 2295, 4010, 6957, 12031, 20712, 35514, 60718, 103500, 175989, 298539, 505399, 853777, 1439856, 2424299, 4075479, 6841787, 11470592, 19207624, 32126763, 53678285
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 21 2009

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):with(numtheory): A158568 := proc(n) return add(tau(i),i=1..fibonacci(n)): end: seq(A158568(n),n=1..20); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Module[{nn=33,f,d},f=Fibonacci[nn];d=DivisorSigma[0,Range[f]];Table[ Total[ Take[d,n]],{n,Fibonacci[Range[nn]]}]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    a(n) = sum(k=1, fibonacci(n), numdiv(k)); \\ Michel Marcus, Feb 12 2019
    
  • Python
    from math import isqrt
    def A153568(n):
        a, b, = 0, 1
        for _ in range(n): a, b = b, a+b
        return (lambda m: 2*sum(a//k for k in range(1, m+1))-m*m)(isqrt(a)) # Chai Wah Wu, Oct 09 2021

Extensions

a(16)-a(33) from Nathaniel Johnston, May 09 2011
Showing 1-2 of 2 results.