A153823 Number of proper divisors of n!.
0, 0, 1, 3, 7, 15, 29, 59, 95, 159, 269, 539, 791, 1583, 2591, 4031, 5375, 10751, 14687, 29375, 41039, 60799, 95999, 191999, 242879, 340031, 532223, 677375, 917279, 1834559, 2332799, 4665599, 5529599, 7864319, 12165119, 16422911
Offset: 0
Keywords
Examples
For n=4, 4! = 4*3*2*1 = 24, which has 7 proper divisors: 1, 2, 3, 4, 6, 8, and 12. So a(4) = 7. - _Michael B. Porter_, Aug 30 2016
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[DivisorSigma(0,Factorial(n)) - 1: n in [0..40]]; // Vincenzo Librandi, Aug 31 2016
-
Mathematica
Table[DivisorSigma[0, n!] - 1, {n, 0, 50}] (* G. C. Greubel, Aug 30 2016 *)
-
PARI
a(n) = numdiv(n!) - 1; \\ Michel Marcus, Aug 31 2016
-
Python
from sympy import factorial, divisor_count def A153823(n): return divisor_count(factorial(n))-1 # Chai Wah Wu, Aug 24 2020
Extensions
More terms from Omar E. Pol, Jan 17 2009
Comments