cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153825 Sum of proper divisors minus the number of proper divisors of n!.

Original entry on oeis.org

0, 0, 0, 3, 29, 225, 1669, 14245, 118705, 1118001, 11705019, 144091717, 1738439017, 24817157329, 355309322689, 5378578597729, 86081749391905, 1570394279028289, 28281459220178401, 572031558109560385, 11458497230555053681
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Comments

a(n) is the sum of proper divisors minus the number of proper divisors of factorial number A000142(n).

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,Factorial(n)) - Factorial(n) - (DivisorSigma(0,Factorial(n))-1): n in [0..20]]; // Vincenzo Librandi, Aug 31 2016
    
  • Maple
    with(numtheory): seq(sigma(factorial(n))-factorial(n)-tau(factorial(n))+1, n = 0 .. 22); # Emeric Deutsch, Jan 07 2009
  • Mathematica
    Table[DivisorSigma[1,n!]-n!-(DivisorSigma[0,n!]-1),{n,0,20}] (* Harvey P. Dale, Jan 14 2012 *)
  • PARI
    a(n) = (sigma(n!) - n!) - (numdiv(n!) - 1); \\ Michel Marcus, Aug 31 2016

Formula

a(n) = A153824(n) - A153823(n) = A152770(A000142(n)).

Extensions

Extended by Emeric Deutsch, Jan 07 2009

A337106 Number of nontrivial divisors of n!.

Original entry on oeis.org

0, 0, 0, 2, 6, 14, 28, 58, 94, 158, 268, 538, 790, 1582, 2590, 4030, 5374, 10750, 14686, 29374, 41038, 60798, 95998, 191998, 242878, 340030, 532222, 677374, 917278, 1834558, 2332798, 4665598, 5529598, 7864318, 12165118, 16422910, 19595518, 39191038, 60466174
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Comments

A divisor of n is trivial if it is 1 or n.

Examples

			The a(3) = 2 through a(5) =14 nontrivial divisions:
  6/2  24/2   120/2
  6/3  24/3   120/3
       24/4   120/4
       24/6   120/5
       24/8   120/6
       24/12  120/8
              120/10
              120/12
              120/15
              120/20
              120/24
              120/30
              120/40
              120/60
		

Crossrefs

A070824 counts nontrivial divisors.
A153823 counts proper divisors of n!.
A337107 has this sequence as column k = 3.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A253249 counts chains of divisors.
A337071 counts chains of divisors starting with n!.
A337105 counts chains of divisors from n! to 1.

Programs

  • Mathematica
    Table[Length[DeleteCases[Divisors[n!],1|n!]],{n,10}]
  • Python
    from sympy import factorial, divisor_count
    def A337106(n):
        return 0 if n <= 1 else divisor_count(factorial(n))-2 # Chai Wah Wu, Aug 24 2020

Formula

a(n) = A000005(n!) - 2 for n > 1.
a(n) = A070824(n!).

Extensions

a(0) from Chai Wah Wu, Aug 24 2020
Showing 1-2 of 2 results.