A153882 a(n) = ((6 + sqrt(5))^n - (6 - sqrt(5))^n)/(2*sqrt(5)).
1, 12, 113, 984, 8305, 69156, 572417, 4725168, 38957089, 321004860, 2644388561, 21781512072, 179402099473, 1477598319444, 12169714749665, 100231029093216, 825511191878977, 6798972400658028, 55996821859648049, 461193717895377720
Offset: 1
Keywords
References
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -31).
Programs
-
Magma
Z
:= PolynomialRing(Integers()); N :=NumberField(x^2-5); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 04 2009 -
Magma
I:=[1,12]; [n le 2 select I[n] else 12*Self(n-1)-31*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 01 2016
-
Mathematica
LinearRecurrence[{12, -31}, {1, 12}, 25] (* or *) Table[((6 + sqrt(5))^n - (6 - sqrt(5))^n)/(2*sqrt(5)) , {n,0,25}] (* G. C. Greubel, Aug 31 2016 *)
-
Sage
[lucas_number1(n,12,31) for n in range(1, 21)] # Zerinvary Lajos, Apr 27 2009
Formula
From Philippe Deléham, Jan 03 2009: (Start)
a(n) = 12*a(n-1) - 31*a(n-2) for n>1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 12*x + 31*x^2). (End)
a(n) = 12*a(n-1) - 31*a(n-2). - G. C. Greubel, Aug 31 2016
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 04 2009
Edited by Klaus Brockhaus, Oct 11 2009
Comments