A153972 a(n) = 2^n + 6.
7, 8, 10, 14, 22, 38, 70, 134, 262, 518, 1030, 2054, 4102, 8198, 16390, 32774, 65542, 131078, 262150, 524294, 1048582, 2097158, 4194310, 8388614, 16777222, 33554438, 67108870, 134217734, 268435462, 536870918, 1073741830, 2147483654
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A209724.
Programs
-
Magma
[2^n+6: n in [0..40]]; // Vincenzo Librandi, May 13 2014
-
Mathematica
a=7; lst={a}; Do[a=(a-2)*2-2; AppendTo[lst,a], {n,30}]; lst NestList[ 2# - 6 &, 7, 31] (* Robert G. Wilson v, Nov 28 2012 *) CoefficientList[Series[(7 - 13 x)/((1 - x) (1 - 2 x)), {x, 0, 30}], x] (* Vincenzo Librandi, May 13 2014 *) LinearRecurrence[{3,-2}, {7, 8}, 25] (* G. C. Greubel, Sep 01 2016 *)
-
PARI
a(n)=2^n+6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n+1) = A209724(2*n-1). - L. Edson Jeffery, Nov 28 2012
From Vincenzo Librandi, May 13 2014: (Start)
G.f.: (7 - 13*x)/((1 - x)*(1 - 2*x)).
a(n) = 2^n + 6.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. (End)
E.g.f.: exp(2*x) + 6*exp(x). - G. C. Greubel, Sep 01 2016
a(n) = 2*a(n-1) - 6 with a(0) = 7. - Elmo R. Oliveira, Nov 11 2023
Comments