cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250742 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

6, 10, 10, 18, 14, 18, 34, 22, 22, 34, 66, 38, 30, 38, 66, 130, 70, 46, 46, 70, 130, 258, 134, 78, 62, 78, 134, 258, 514, 262, 142, 94, 94, 142, 262, 514, 1026, 518, 270, 158, 126, 158, 270, 518, 1026, 2050, 1030, 526, 286, 190, 190, 286, 526, 1030, 2050, 4098, 2054, 1038
Offset: 1

Views

Author

R. H. Hardin, Nov 27 2014

Keywords

Comments

Table starts
....6...10...18...34...66..130..258..514.1026.2050.4098..8194.16386.32770.65538
...10...14...22...38...70..134..262..518.1030.2054.4102..8198.16390.32774.65542
...18...22...30...46...78..142..270..526.1038.2062.4110..8206.16398.32782.65550
...34...38...46...62...94..158..286..542.1054.2078.4126..8222.16414.32798.65566
...66...70...78...94..126..190..318..574.1086.2110.4158..8254.16446.32830.65598
..130..134..142..158..190..254..382..638.1150.2174.4222..8318.16510.32894.65662
..258..262..270..286..318..382..510..766.1278.2302.4350..8446.16638.33022.65790
..514..518..526..542..574..638..766.1022.1534.2558.4606..8702.16894.33278.66046
.1026.1030.1038.1054.1086.1150.1278.1534.2046.3070.5118..9214.17406.33790.66558
.2050.2054.2062.2078.2110.2174.2302.2558.3070.4094.6142.10238.18430.34814.67582

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
		

Crossrefs

Column 1 is A052548(n+1)
Column 2 is A153972(n+1)
Diagonal is A000918(n+2)

Formula

The constraints apparently result in horizontally or vertically banded arrays, hence:
Empirical: T(n,k) = 2^(k+1)+2^(n+1)-2
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +2
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +6
k=3: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +14
k=4: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +30
k=5: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +62
k=6: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +126
k=7: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +254

A153973 a(n) = 3*a(n-1) - 2*a(n-2), with a(1) = 9, a(2) = 12.

Original entry on oeis.org

9, 12, 18, 30, 54, 102, 198, 390, 774, 1542, 3078, 6150, 12294, 24582, 49158, 98310, 196614, 393222, 786438, 1572870, 3145734, 6291462, 12582918, 25165830, 50331654, 100663302, 201326598, 402653190, 805306374, 1610612742, 3221225478
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[9,12]; [n le 2 select I[n] else 3*Self(n-1)-2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Sep 01 2016
  • Mathematica
    a=9;lst={a};Do[a=(a-2)*2-2;AppendTo[lst,a],{n,6!}];lst
    NestList[2#-6&,9,30] (* or *) LinearRecurrence[{3,-2},{9,12},31]
    Table[ (3/2)*(4 + 2^n), {n, 1, 25}] (* G. C. Greubel, Sep 01 2016 *)

Formula

a(n) = 3*a(n-1) - 2*a(n-2), with a(1) = 9, a(2) = 12. - Harvey P. Dale, May 09 2012
From G. C. Greubel, Sep 01 2016: (Start)
a(n) = (3/2)*(4 + 2^n).
G.f.: 3*x*(3 - 5*x)/((1 - x)*(1 - 2*x)).
E.g.f.: (3/2)*(-5 + 4*exp(x) + exp(2*x)). (End)

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021

A245728 Numbers k that divide 2^k + 6.

Original entry on oeis.org

1, 2, 10, 1030, 10009593662, 13957196317, 55299492770, 3764656723270
Offset: 1

Views

Author

Derek Orr, Jul 30 2014

Keywords

Comments

No other terms below 10^15. Some larger terms: 2962089521722084981, 1376243703434217460265762. - Max Alekseyev, Sep 23 2016

Examples

			2^10 + 6 = 1030 is divisible by 10. Thus 10 is a term of this sequence.
		

Crossrefs

Programs

  • Maple
    select(n -> 2 &^ n + 6 mod n = 0, [$1..10^6]); # Robert Israel, Jul 30 2014
  • Mathematica
    Select[Range[10^5], Divisible[2^# + 6, #] &] (* Robert Price, Oct 12 2018 *)
  • PARI
    for(n=1,10^9,if(Mod(2,n)^n==Mod(-6,n),print1(n,", ")))

Extensions

a(5) from Jason G. Wurtzel, Sep 25 2014
a(6)-a(8) from Max Alekseyev, Sep 23 2016

A209724 1/4 the number of (n+1) X 6 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.

Original entry on oeis.org

8, 9, 10, 12, 14, 18, 22, 30, 38, 54, 70, 102, 134, 198, 262, 390, 518, 774, 1030, 1542, 2054, 3078, 4102, 6150, 8198, 12294, 16390, 24582, 32774, 49158, 65542, 98310, 131078, 196614, 262150, 393222, 524294, 786438, 1048582, 1572870, 2097158
Offset: 1

Views

Author

R. H. Hardin, Mar 12 2012

Keywords

Comments

Column 5 of A209727.
Conjecture: a(1) = 8; for n > 1, a(n) is the smallest integer m such that m = ((2x * a(n-1)) /(x+1)) - x , with x a positive nontrivial divisor of m. (This is true at least for a(1) to a(100).) - Enric Reverter i Bigas, Oct 11 2020

Examples

			Some solutions for n=4:
..2..1..2..1..2..1....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....1..0..1..0..1..0....0..1..0..1..0..2
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(8 + x - 15*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 6 for n even.
a(n) = 2^((n+1)/2) + 6 for n odd.
(End)

A242475 a(n) = 2^n + 8.

Original entry on oeis.org

9, 10, 12, 16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832
Offset: 0

Views

Author

Vincenzo Librandi, May 20 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^n+8: n in [0..40]];
  • Mathematica
    Table[2^n + 8, {n, 0, 40}] (* or *) CoefficientList[Series[(9 - 17 x)/((1 - x) (1 - 2 x)),{x, 0, 30}], x]
    LinearRecurrence[{3,-2},{9,10},40] (* Harvey P. Dale, May 21 2025 *)

Formula

G.f.: (9 - 17*x)/((1 - x)*(1 - 2*x)).
a(n) = 2*a(n-1) - 8 = 3*a(n-1) - 2*a(n-2).
a(n) = A052548(n)+6 = A140504(n)+4 = A153972(n)+2.
E.g.f.: exp(2*x) + 8*exp(x). - Elmo R. Oliveira, Nov 11 2023

A246139 a(n) = 2^n + 10.

Original entry on oeis.org

11, 12, 14, 18, 26, 42, 74, 138, 266, 522, 1034, 2058, 4106, 8202, 16394, 32778, 65546, 131082, 262154, 524298, 1048586, 2097162, 4194314, 8388618, 16777226, 33554442, 67108874, 134217738, 268435466, 536870922, 1073741834, 2147483658, 4294967306
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Comments

First trisection of A085688. [Bruno Berselli, Aug 19 2014]

Crossrefs

Cf. Sequences of the form 2^n + k: A000079 (k=0), A000051 (k=1), A052548 (k=2), A062709 (k=3), A140504 (k=4), A168614 (k=5), A153972 (k=6), A168415 (k=7), A242475 (k=8), A188165 (k=9), this sequence (k=10).
Cf. A085688.

Programs

  • Magma
    [2^n+10: n in [0..40]];
    
  • Mathematica
    Table[2^n + 10, {n, 0, 40}]
  • PARI
    vector(50, n, 2^(n-1)+10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (11 - 21*x)/(1 - 3*x + 2*x^2).
a(n) = A000079(n) + 10.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
E.g.f.: exp(2*x) + 10*exp(x). - Elmo R. Oliveira, Nov 11 2023

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023
Showing 1-7 of 7 results.