A153977 One-fourth of partial sums of A153976.
2, 9, 27, 65, 135, 252, 434, 702, 1080, 1595, 2277, 3159, 4277, 5670, 7380, 9452, 11934, 14877, 18335, 22365, 27027, 32384, 38502, 45450, 53300, 62127, 72009, 83027, 95265, 108810, 123752, 140184, 158202, 177905, 199395, 222777, 248159, 275652, 305370, 337430
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
A153977:=n->(1/4)*sum(i^3 + (i+2)^3, i=0..n): seq(A153977(n), n=0..50); # Wesley Ivan Hurt, Feb 04 2017
-
Mathematica
a[n_]:=n^3;lst={};s=0;Do[s+=(a[n]+a[n+2]);AppendTo[lst,s/4],{n,0,6!}];lst Accumulate[Array[#^3+(#+2)^3&,40,0]]/4 (* or *) LinearRecurrence[ {5,-10,10,-5,1},{2,9,27,65,135},40] (* Harvey P. Dale, Aug 02 2011 *)
-
PARI
a(n)=(n^4 + 2*n^3 + 7*n^2 + 6*n)/8 \\ Charles R Greathouse IV, Feb 06 2017
Formula
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5, a(1)=2, a(2)=9, a(3)=27, a(4)=65, a(5)=135. - Harvey P. Dale, Aug 02 2011
Recurrence: (n-1)*(n^2 - n + 6)*a(n) = (n+1)*(n^2 + n + 6)*a(n-1). - Vaclav Kotesovec, Dec 26 2013
a(n) = (A000217(n)^2 + 3*A000217(n))/2 where A000217(n) is the n-th triangular number. - Frederic Isenmann, Feb 04 2017
Sum_{n>=1} 1/a(n) = 14/9 - 4*tanh(sqrt(23)*Pi/2)*Pi/(3*sqrt(23)). - Amiram Eldar, Aug 23 2022
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: x*(2 - x + 2*x^2)/(1-x)^5.
E.g.f.: x*(2 + x)^2*(4 + x)*exp(x)/8. (End)