cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153977 One-fourth of partial sums of A153976.

Original entry on oeis.org

2, 9, 27, 65, 135, 252, 434, 702, 1080, 1595, 2277, 3159, 4277, 5670, 7380, 9452, 11934, 14877, 18335, 22365, 27027, 32384, 38502, 45450, 53300, 62127, 72009, 83027, 95265, 108810, 123752, 140184, 158202, 177905, 199395, 222777, 248159, 275652, 305370, 337430
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A153977:=n->(1/4)*sum(i^3 + (i+2)^3, i=0..n): seq(A153977(n), n=0..50); # Wesley Ivan Hurt, Feb 04 2017
  • Mathematica
    a[n_]:=n^3;lst={};s=0;Do[s+=(a[n]+a[n+2]);AppendTo[lst,s/4],{n,0,6!}];lst
    Accumulate[Array[#^3+(#+2)^3&,40,0]]/4 (* or *) LinearRecurrence[ {5,-10,10,-5,1},{2,9,27,65,135},40] (* Harvey P. Dale, Aug 02 2011 *)
  • PARI
    a(n)=(n^4 + 2*n^3 + 7*n^2 + 6*n)/8 \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5, a(1)=2, a(2)=9, a(3)=27, a(4)=65, a(5)=135. - Harvey P. Dale, Aug 02 2011
a(n) = (A000217(n-1)^2 + A000217(n+1)^2 - 1)/4. - Richard R. Forberg, Dec 25 2013
Recurrence: (n-1)*(n^2 - n + 6)*a(n) = (n+1)*(n^2 + n + 6)*a(n-1). - Vaclav Kotesovec, Dec 26 2013
a(n) = A000217(A000217(n)) + A000217(n). - Bruno Berselli, May 28 2015
a(n) = (A000217(n)^2 + 3*A000217(n))/2 where A000217(n) is the n-th triangular number. - Frederic Isenmann, Feb 04 2017
Sum_{n>=1} 1/a(n) = 14/9 - 4*tanh(sqrt(23)*Pi/2)*Pi/(3*sqrt(23)). - Amiram Eldar, Aug 23 2022
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: x*(2 - x + 2*x^2)/(1-x)^5.
E.g.f.: x*(2 + x)^2*(4 + x)*exp(x)/8. (End)