A154227 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)*T(n-2, k-1), read by rows.
1, 1, 1, 1, 8, 1, 1, 19, 19, 1, 1, 35, 158, 35, 1, 1, 57, 592, 592, 57, 1, 1, 86, 1629, 5608, 1629, 86, 1, 1, 123, 3767, 28549, 28549, 3767, 123, 1, 1, 169, 7760, 105621, 309458, 105621, 7760, 169, 1, 1, 225, 14694, 320566, 1985274, 1985274, 320566, 14694, 225, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 19, 19, 1; 1, 35, 158, 35, 1; 1, 57, 592, 592, 57, 1; 1, 86, 1629, 5608, 1629, 86, 1; 1, 123, 3767, 28549, 28549, 3767, 123, 1; 1, 169, 7760, 105621, 309458, 105621, 7760, 169, 1; 1, 225, 14694, 320566, 1985274, 1985274, 320566, 14694, 225, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
f:= func< n | Binomial(n+2,2) >; function T(n,k) if k eq 0 or k eq n then return 1; else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
-
Maple
T:= proc(n, k) option remember; if k=0 or k=n then 1 else T(n-1, k) + T(n-1, k-1) + binomial(n+2,2)*T(n-2, k-1) fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
-
Mathematica
T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + Binomial[n+2, 2]*T[n-2, k-1] ]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
-
Sage
def f(n): return binomial(n+2,2) def T(n,k): if (k==0 or k==n): return 1 else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)*(n+2)/2)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.
Extensions
Edited by G. C. Greubel, Mar 02 2021
Comments