A154235 a(n) = ( (4 + sqrt(6))^n - (4 - sqrt(6))^n )/(2*sqrt(6)).
1, 8, 54, 352, 2276, 14688, 94744, 611072, 3941136, 25418368, 163935584, 1057300992, 6819052096, 43979406848, 283644733824, 1829363802112, 11798463078656, 76094066608128, 490767902078464, 3165202550546432
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-10).
Crossrefs
Programs
-
GAP
a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-10*a[n-2]; od; a; # G. C. Greubel, May 21 2019
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-6); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009 -
Mathematica
LinearRecurrence[{8, -10}, {1, 8}, 30] (* or *) Table[Simplify[((4 + Sqrt[6])^n -(4-Sqrt[6])^n)/(2*Sqrt[6])], {n, 30}] (* G. C. Greubel, Sep 06 2016 *)
-
PARI
a(n)=([0,1; -10,8]^(n-1)*[1;8])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
PARI
my(x='x+O('x^30)); Vec(x/(1-8*x+10*x^2)) \\ G. C. Greubel, May 21 2019
-
Sage
[lucas_number1(n,8,10) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
Formula
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 10*a(n-2) for n > 1, where a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 10*x^2). (End)
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 04 2009
Comments