A154246 a(n) = ( (5 + sqrt(7))^n - (5 - sqrt(7))^n )/(2*sqrt(7)).
1, 10, 82, 640, 4924, 37720, 288568, 2206720, 16872976, 129008800, 986374432, 7541585920, 57661119424, 440862647680, 3370726327168, 25771735613440, 197044282245376, 1506551581411840, 11518718733701632, 88069258871603200
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..750
- Index entries for linear recurrences with constant coefficients, signature (10,-18).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-7); S:=[((5+r)^n-(5-r)^n)/(2*r): n in [1..25]]; [Integers()!S[j]: j in [1..#S]]; // Klaus Brockhaus, Jan 07 2009 -
Magma
I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1)-18*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 08 2016
-
Mathematica
Table[Simplify[((5+Sqrt[7])^n -(5-Sqrt[7])^n)/(2*Sqrt[7])], {n,1,25}] (* or *) LinearRecurrence[{10, -18}, {1, 10}, 25] (* G. C. Greubel, Sep 07 2016 *)
-
PARI
my(x='x+O('x^25)); Vec(x/(1-10*x+18*x^2)) \\ G. C. Greubel, May 31 2019
-
Sage
[lucas_number1(n,10,18) for n in range(1, 25)] # Zerinvary Lajos, Apr 26 2009
Formula
From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 10*a(n-1) - 18*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 10*x + 18*x^2). (End)
E.g.f.: (1/sqrt(7))*exp(5*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Comments