A154277 a(n) = 81*n^2 - 72*n + 17.
17, 26, 197, 530, 1025, 1682, 2501, 3482, 4625, 5930, 7397, 9026, 10817, 12770, 14885, 17162, 19601, 22202, 24965, 27890, 30977, 34226, 37637, 41210, 44945, 48842, 52901, 57122, 61505, 66050, 70757, 75626, 80657, 85850, 91205, 96722
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[26, 197, 530]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {26, 197, 530}, 40] (* Vincenzo Librandi, Feb 02 2012 *) Table[81n^2-72n+17,{n,0,40}] (* Harvey P. Dale, Oct 16 2022 *)
-
PARI
for(n=0, 22, print1(81*n^2 - 72*n + 17", ")); \\ Vincenzo Librandi, Feb 02 2012
Formula
G.f.: (17 - 25*x + 170*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 02 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 02 2012
E.g.f.: (17 + 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 09 2016
Extensions
92205 replaced by 91205 - R. J. Mathar, Jan 07 2009
Edited by Charles R Greathouse IV, Aug 09 2010
Comments