cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154277 a(n) = 81*n^2 - 72*n + 17.

Original entry on oeis.org

17, 26, 197, 530, 1025, 1682, 2501, 3482, 4625, 5930, 7397, 9026, 10817, 12770, 14885, 17162, 19601, 22202, 24965, 27890, 30977, 34226, 37637, 41210, 44945, 48842, 52901, 57122, 61505, 66050, 70757, 75626, 80657, 85850, 91205, 96722
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 90*n + 26)^2 - (9*n^2 + 10*n + 3)*(27*n + 15)^2 = 1 can be written as a(n+1)^2 - A154254(n+1)*A154267(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

  • Magma
    I:=[26, 197, 530]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {26, 197, 530}, 40] (* Vincenzo Librandi, Feb 02 2012 *)
    Table[81n^2-72n+17,{n,0,40}] (* Harvey P. Dale, Oct 16 2022 *)
  • PARI
    for(n=0, 22, print1(81*n^2 - 72*n + 17", ")); \\ Vincenzo Librandi, Feb 02 2012

Formula

G.f.: (17 - 25*x + 170*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 02 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 02 2012
a(n) = A017221(n-1)^2 + 1 with A017221(-1) = -4. - Bruno Berselli, Feb 02 2012
E.g.f.: (17 + 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 09 2016

Extensions

92205 replaced by 91205 - R. J. Mathar, Jan 07 2009
Edited by Charles R Greathouse IV, Aug 09 2010